Paper | Title | Page |
---|---|---|
TUOBB3 | HORIZON 2020 EuPRAXIA Design Study | 1265 |
|
||
The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. | ||
![]() |
Slides TUOBB3 [9.269 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPAB114 | Design Study for a Plasma Undulator Experiment Using Capillary Based Discharge Plasma Source | 1584 |
|
||
A plasma undulator is formed when a short laser pulse is injected into plasma off-axis or at an angle that causes the centroid of this laser pulse to oscillate. Ponderomotively driven plasma wake will follow this centroid given that the product of the plasma wave number and the characteristic Rayleigh length of the laser is much larger than one. This oscillating transverse wakefield may work as an undulator forcing particles to follow sinusoidal trajectories and emit synchrotron radiation. In this paper, plans for an experiment are introduced and resulting radiation and injected beam characteristics are discussed. The aforementioned laser centroid oscillations are demonstrated using, EPOCH, a PIC code for laser-plasma interactions. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB114 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPIK006 | FLASHForward - A Future-Oriented Wakefield-Accelerator Research and Development Facility at FLASH | 1692 |
|
||
Funding: Helmholtz ARD program and the VH-VI-503 FLASHForward is a beam-driven plasma wakefield acceleration facility, currently under construction at DESY (Hamburg, Germany), aiming at the stable generation of electron beams of several GeV with small energy spread and emittance. High-quality 1 GeV-class electron beams from the free-electron laser FLASH will act as the wake driver. The setup will allow studies of external injection as well as density-downramp injection. With a triangular-shaped driver beam electron energies of up to 5 GeV from a few centimeters of plasma can be anticipated. Particle-In-Cell simulations are used to assess the feasibility of each technique and to predict properties of the accelerated electron bunches. In this contribution the current status of FLASHForward, along with recent experimental developments and upcoming scientific plans, will be reviewed. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK006 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |