Author: Okugi, T.
Paper Title Page
TUPIK097 Improving the Performance of an Orbit Feed-forward Based on Quadrupole Motion at the KEK ATF 1931
 
  • D.R. Bett, C. Charrondière, M. Patecki, J. Pfingstner, D. Schulte, R. Tomás
    CERN, Geneva, Switzerland
  • P. Burrows, G.B. Christian, C. Perry
    JAI, Oxford, United Kingdom
  • A. Jeremie
    IN2P3-LAPP, Annecy-le-Vieux, France
  • K. Kubo, S. Kuroda, T. Naito, T. Okugi, T.T. Tauchi, N. Terunuma
    KEK, Ibaraki, Japan
 
  The high luminosity requirement for a future linear collider sets a demanding limit on the beam quality at the Interation Point (IP). Even the natural motion of the ground could misalign the quadrupole magnets to such an extent that the resulting dipole kicks would require compensation. The novel technique described in this paper uses seismometers to measure the positions of the quadrupole magnets in real time and a kicker to counteract the effect of their misalignment. The prototype system deployed at the Accelerator Test Facility (ATF) at KEK in Japan has already demonstrated a reduction in the pulse-to-pulse vertical position jitter of the beam by about 10%. Based on the observed correlation of the beam position to the quadrupole positions the maximum possible jitter reduction from such a system is estimated to be about 25%. This paper details the latest improvements made to the system with the aim of achieving this limit.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA002 Numerical Investigation of Beam Halo From Beam Gas Scattering in KEK-ATF 4410
 
  • R.J. Yang, P. Bambade
    LAL, Orsay, France
  • K. Kubo, T. Okugi, N. Terunuma, D. Zhou
    KEK, Ibaraki, Japan
 
  To demonstrate the final focus schemes of the Future Linear Collider (FLC), the Accelerator Test Facility 2 (ATF2) at KEK is devoted to focus the beam to a RMS size of a few tens of nanometers (nm) vertically and to provide stability at the nm level at the virtual Interaction Point (IP). However, the loss of halo particles upstream will introduce background to the diagnostic instrument measuring the ultra-small beam, using a laser interferometer monitor. To help the realization of the above goals and beam operation, understanding and mitigation of beam halo are crucial. In this paper, we present the systematical simulation of beam halo formation from beam gas Coulomb scattering (BGS) in the ATF damping ring. The behavior of beam halo with various machine parameters is also discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA002  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK075 ATF2 Beam Halo Collimation System Background and Wakefield Measurements in the 2016 Runs 1864
 
  • N. Fuster-Martínez, A. Faus-Golfe
    IFIC, Valencia, Spain
  • P. Bambade, A. Faus-Golfe, S. Wallon, R.J. Yang
    LAL, Orsay, France
  • K. Kubo, T. Okugi, T. Tauchi, N. Terunuma
    Sokendai, Ibaraki, Japan
  • S. Kuroda
    KEK, Ibaraki, Japan
  • I. Podadera, F. Toral
    CIEMAT, Madrid, Spain
  • G.R. White
    SLAC, Menlo Park, California, USA
 
  A single vertical beam halo collimation system has been installed in ATF2 in March 2016 to reduce the background in the IP and Post-IP region. In this paper, we present the results of an experimental program carried out during 2016 in order to demonstrate the efficiency of the vertical collimation system and measure the wakefields induced by such a system. Furthermore, a comparison of the measurements of the collimation system wakefield impact with CST PS numerical simulations and analytical calculations is also presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK075  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)