Author: Nordt, A.
Paper Title Page
TUPIK079 Development and Status of Protection Functions for the Normal Conducting LINAC at ESS 1880
 
  • R. Andersson, E. Bargalló, S. Kövecses, A. Nordt, M. Zaera-Sanz
    ESS, Lund, Sweden
  • C. Hilbes, M. Rejzek
    ZHAW, Winterthur, Switzerland
 
  The European Spallation Source faces a great challenge in succeeding with its ambitious availability goals. The aim is to construct a machine that allows for 95% availability for neutron beam production. This goal requires a robust protection system that allows for high availability by continuously monitoring and acting on the machine states, in order to avoid long facility downtimes and optimize the operation at any stage. The normal conducting section consists of the first 48 meters of the machine, and performs the initial acceleration, bunching, steering, and focusing of the beam, which sets it up for optimal transition into the superconducting section. Through a fit-for-purpose risk management process, a set of protection functions has been identified. The risk identification, analysis, and treatment were done in compliance with modern safety and ISO standards. This ensures that the risks, in this case downtime and equipment damage, are properly prevented and mitigated. This paper describes this process of defining the protection functions for the normal conducting linac at ESS.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK080 Accelerator Personnel Safety Systems for European Spallation Source 1884
 
  • M. Mansouri, S.L. Birch, A. Nordt, D. Paulic, Y.K. Sin, A. Toral Diez
    ESS, Lund, Sweden
 
  The European Spallation Source (ESS) is a collabora-tion of 17 European countries to build the world's most powerful neutron source for research. ESS is under con-struction since 2014 and it will produce first neutrons in 2019. The linear proton accelerator is composed of nor-mal conducting sections plus the superconducting linac. When operational, such facilities include various hazards, such as ionizing radiation, high voltage and oxygen defi-ciency. The accelerator Personal Safety System (PSS) limits exposure to them and ensures personnel safety in the accelerator tunnel. It will be developed in accordance with IEC 61508 standard (Functional Safety of Electri-cal/Electronic/Programmable Electronic Safety-related Systems), which has become a good practice in similar facilities to develop safety related systems. This paper gives an overview of the accelerator PSS and its subsys-tems. The progress of the accelerator PSS design and the selected software and hardware technologies will also be described.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK080  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK083 Methodology, Design and Physical Deployment of Highly Dependable PLC Based Interlock Systems for ESS 1887
 
  • M. Zaera-Sanz, S. Kövecses, A. Nordt
    ESS, Lund, Sweden
 
  Approximately 350 resistive magnets, 110 vacuum gate valves and 30 interceptive devices will be installed in the 600 m long linear accelerator at ESS, transporting the proton beam from the source to the target station. In order to protect this equipment from damage and to take the appropriate actions required to minimise recovery time, a dedicated set of PLC based interlock systems are being designed. The magnet powering interlock system will safely switch off a Power Converter (PC) upon the detection of an internal magnet or PC failure. The interceptive devices interlock system will protect Faraday cups, wire scanners, EMUs and LBMs from a beam mode that they cannot withstand by allowing/removing permission for movement. The vacuum gates interlock system will protect the gate valves in case of unexpected closing. The target interlock system will protect the target system by acting on motors, compressors, etc. These interlock systems will inform the beam interlock system to inhibit further beam operation by stopping beam if required. The methodology, design and physical deployment of the four interlock systems will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK083  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)