Author: Nikiforov, D.A.
Paper Title Page
TUPAB014 Preliminary Design of FCC-ee Pre-Injector Complex 1337
SUSPSIK006   use link to see paper's listing under its alternate paper code  
 
  • S. Ogur, Y. Papaphilippou, F. Zimmermann
    CERN, Geneva, Switzerland
  • A.M. Barnyakov, A.E. Levichev, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • K. Furukawa, N. Iida, F. Miyahara, K. Oide
    KEK, Ibaraki, Japan
 
  The design of a 100 km circular e+e collider with extremely high luminosity is an important component of the global Future Circular Collider (FCC) study hosted by CERN. FCC-ee is being designed to serve as Z, W, H and top factory, covering beam energies from 45.6 to 175 GeV. For the injectors, the Z-operation is the most challenging mode, due to the high total charge and low equilibrium emittance in the collider at this energy. Thus, fulfilling the Z-mode will also meet the demands for all other modes of FCC-ee. This goal can be achieved by using a 6 GeV NC linac with an S-band RF frequency of 2.856 GHz and a repetition rate of 100 Hz. This linac will accelerate two bunches per RF pulse, each with a charge of 6.5 nC. Positrons will be generated by sending 4.46 GeV e- onto a hybrid target so that the e+ created can still be accelerated to 1.54 GeV in the remaining part of the same linac. The emittance of the e+ beam will then shrink to the nm level in a 1.54 GeV damping ring. After damping, the e+ will be reinjected into the linac and accelerated to 6 GeV. The e- and e+ will then be accelerated alternately to 45.6 GeV in the booster, before they are injected into the collider.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB014  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA115 Progress with Long-Range Beam-Beam Compensation Studies for High Luminosity LHC 2358
 
  • A. Rossi, O. Aberle, J. Albertone, A. Bertarelli, C.B. Boccard, F. Carra, G. Cattenoz, Y. Delaup, S.D. Fartoukh, G. Gobbi, J. Lendaro, Y. Papaphilippou, D. Perini, S. Redaelli, H. Schmickler, C. Zanoni
    CERN, Geneva, Switzerland
  • A.M. Barnyakov, A.E. Levichev, D.A. Nikiforov
    BINP SB RAS, Novosibirsk, Russia
  • M. Fitterer, A.S. Patapenka, G. Stancari, A. Valishev
    Fermilab, Batavia, Illinois, USA
 
  Long-range beam-beam (LRBB) interactions can be a source of emittance growth and beam losses in the LHC during physics and will become even more relevant with the smaller '* and higher bunch intensities foreseen for the High Luminosity LHC upgrade (HL-LHC), in particular if operated without crab cavities. Both beam losses and emittance growth could be mitigated by compensat-ing the non-linear LRBB kick with a correctly placed current carrying wire. Such a compensation scheme is currently being studied in the LHC through a demonstration test using current-bearing wires embedded into col-limator jaws, installed either side of the high luminosity interaction regions. For HL-LHC two options are considered, a current-bearing wire as for the demonstrator, or electron lenses, as the ideal distance between the particle beam and compensating current may be too small to allow the use of solid materials. This paper reports on the ongoing activities for both options, covering the progress of the wire-in-jaw collimators, the foreseen LRBB experiments at the LHC, and first considerations for the design of the electron lenses to ultimately replace material wires for HL-LHC.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK026 VEPP-5 Injection Complex: Two Colliders Operation Experience 2982
 
  • D.E. Berkaev, A.V. Andrianov, K.V. Astrelina, V.V. Balakin, A.M. Batrakov, O.V. Belikov, M.F. Blinov, D. Bolkhovityanov, A. Butakov, E.V. Bykov, N.S. Dikansky, F.A. Emanov, A.R. Frolov, V.V. Gambaryan, K. Gorchakov, Ye.A. Gusev, S.E. Karnaev, G.V. Karpov, A.S. Kasaev, E. Kenzhebulatov, V.A. Kiselev, S. Kluschev, A.A. Kondakov, I. Koop, I.E. Korenev, N.Kh. Kot, V.R. Kozak, A.A. Krasnov, S.A. Krutikhin, I.V. Kuptsov, G.Y. Kurkin, N.N. Lebedev, A.E. Levichev, P.V. Logatchov, Yu. Maltseva, A.A. Murasev, V. Muslivets, D.A. Nikiforov, An.A. Novikov, A.V. Ottmar, A.V. Pavlenko, I.L. Pivovarov, V.V. Rashchenko, Yu. A. Rogovsky, S.L. Samoylov, N. Sazonov, A.V. Semenov, S.V. Shiyankov, D.B. Shwartz, A.N. Skrinsky, A.A. Starostenko, D.A. Starostenko, A.G. Tribendis, A.S. Tsyganov, S.S. Vasichev, S.V. Vasiliev, V.D. Yudin, I.M. Zemlyansky, A.N. Zhuravlev
    BINP SB RAS, Novosibirsk, Russia
  • A.V. Andrianov, V.V. Balakin, F.A. Emanov, I. Koop, A.A. Krasnov, A.E. Levichev, D.A. Nikiforov, A.V. Pavlenko, Yu. A. Rogovsky, D.B. Shwartz, A.A. Starostenko
    NSU, Novosibirsk, Russia
  • A.I. Mickailov
    Budker INP & NSU, Novosibirsk, Russia
  • A.G. Tribendis
    NSTU, Novosibirsk, Russia
 
  Two BINP colliders VEPP-4M and VEPP-2000 e+e colliders are under operation with the beams feeding from VEPP-5 Injection Complex via newly constructed K-500 beam transfer line. Upgraded injection chain demonstrated ability to provide designed luminosity both to VEPP-4M and VEPP-2000 and techniques of reliable operation are under development now. The design and operation experience of Injection Complex and transfer lines are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)