Author: Nenni, M.
Paper Title Page
THPIK017 Field Uniformity Preservation Strategies for the ESS DTL: Approach and Simulations 4139
 
  • G.S. Mauro, F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
  • P. Mereu, M. Mezzano, C. Mingioni, M. Nenni
    INFN-Torino, Torino, Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4 % (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. This paper presents the approach taken in order to preserve field flatness of DTL Tanks. This strategy required a set of simulations and consequent choices about RF design of DTL cells, RF coupler tuning and compensation, cooling of the DTL cells. Outcomes of these simulations and the experimental verifications of this approach are then explained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA046 Thermo Mechanical Study of the ESS DTL 4537
 
  • P. Mereu, M. Mezzano, C. Mingioni, M. Nenni
    INFN-Torino, Torino, Italy
  • F. Grespan, A. Palmieri, A. Pisent
    INFN/LNL, Legnaro (PD), Italy
 
  The Drift Tube Linac (DTL) of the European Spallation Source (ESS) is designed to operate at 352.2 MHz with a duty cycle of 4 % (3 ms pulse length, 14 Hz repetition period) and will accelerate a proton beam of 62.5 mA pulse peak current from 3.62 to 90 MeV. In this paper the main issues regarding the thermo-mechanical 3D details of the DTL are addressed and a Computational Fluid Dynamics (CFD) model is proposed and validated against the experimental data. The results of these simulations are used to properly design the DTL cooling system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)