Author: Muehle, C.     [Mühle, C.]
Paper Title Page
TUPVA058 Status of the FAIR pLinac 2208
 
  • C.M. Kleffner, R. Berezov, D. Daehn, J. Fils, P. Forck, L. Groening, M. Kaiser, K. Knie, C. Mühle, S. Puetz, A. Schnase, G. Schreiber, T. Sieber, J. Trüller, W. Vinzenz, C. Will
    GSI, Darmstadt, Germany
  • U. Ratzinger
    IAP, Frankfurt am Main, Germany
 
  This paper describes the development progress of the 70 MeV, 70 mA proton injector for the FAIR facility. The injector comprises an ECR-type high current proton source followed by a ladder 4-rod RFQ and six normal conduction CH-DTL accelerating cavities. This unique design allows for a compact structure. The design work of the cavities has been mostly completed by our collaberation partners at IAP Frankfurt. The design of the buncher cavities, the mechanical integration as well as beam diagnostic devices are currently under development. The construction of a new modulator for the pLinac rf-system has been started on site. The proton source and the LEBT as well as the subsequent chopper are currently assembled at CEA/Saclay. Beam commissioning of the source at Saclay will start at the beginning of 2017. An overview of the pLinac main parameters and design choices is given, and the overall status reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA058  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA030 FAIR SIS100 - Features and Status of Realisation 3320
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, T. Eisel, E.S. Fischer, J. Henschel, P. Hülsmann, H. Klingbeil, H.G. König, H. Kollmus, P. Kowina, J.P. Meier, A. Mierau, C. Mühle, C. Omet, D. Ondreka, V.P. Plyusnin, I. Pongrac, N. Pyka, P. Rottländer, C. Roux, J. Stadlmann, B. Streicher, St. Wilfert
    GSI, Darmstadt, Germany
 
  SIS100 is a unique heavy ion synchrotron designed for the generation of high intensity heavy ion and Proton beams. New features and solutions are implemented to enable operation with low charge state heavy ions and to minimize ionization beam loss driven by collisions with the residual gas. SIS100 aims for new frontier and world wide leading Uranium bam intensities. A huge effort is taken to stabilized the dynamics of the residual gas pressure and to suppress ion induced desorption. Fast ramped superconducting magnets have been developed and are in production with highest precision in engineering and field quality, matching the requirements from beams with high space charge. A powerful equipment with Rf stations for fast acceleration, pre- and final compression, for the generation of barrier buckets and provision of longitudinal feed-back shall allow a flexible handling of the ion bunches for the matching to various user requirements. Results obtained with FOS (first of series) devices, status of realisation and technical challenges resulting from the demanding goals, will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)