Author: Militsyn, B.L.
Paper Title Page
TUPAB111 Energy Distribution and Work Function Measurements for Metal Photocathodes with Measured Levels of Surface Roughness 1580
 
  • L.B. Jones, T.S. Beaver, B.L. Militsyn, T.C.Q. Noakes, R. Valizadeh
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • S. Mistry
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • S. Mistry
    Loughborough University, Leicestershre, United Kingdom
 
  Funding: The work is part of EuCARD-2, partly funded by the European Commission, GA 312453.
The minimum achievable emittance in an electron accelerator depends strongly on the intrinsic emittance of the photocathode electron source which is measureable as the mean longitudinal and transverse energy spreads in the photoemitted electrons. Reducing emittance in an accelerator driving a Free Electron Laser (FEL) delivers significant reduction in the saturation length for an x-ray FEL, reducing machine cost and increasing x-ray beam brightness. There are many parameters which affect the intrinsic emittance of a photocathode. Surface roughness is a significant factor*, and consequently the development of techniques to manufacture low roughness photocathodes with optimum emission properties is a priority for the electron source community. In this work, we present transverse energy distribution and work function measurements made using our TESS facility** for electrons emitted from copper and molybdenum photocathodes with differing levels of measured surface roughness.
* Proc. FEL '06, THPPH013, 583-586
** Proc. FEL '13, TUPPS033, 290-293
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB111  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB088 Dark Current Studies in the CLARA Front-End Injector 2779
SUSPSIK014   use link to see paper's listing under its alternate paper code  
 
  • F. Jackson, I.R. Gessey, J.W. McKenzie, B.L. Militsyn, P.J. Tipping
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
 
  At STFC Daresbury a new facility CLARA (Compact Linear Accelerator for Research and Applications) is being designed and constructed. The principal aim of CLARA is advanced Free Electron Laser research. Halo and dark current in CLARA is a concern for damage to the undulator, and other applications of the machine. Recently the front end (gun, diagnostics, first linac) of CLARA has been installed including some collimation to mitigate halo effects. Beam halo may arise from gun field emission or due to beam dynamics in the early stages of acceleration, which may achieve the same energy as the core beam and thus may be transported to the undulator. The code CST is used to study the gun field emission. The code ASTRA is used to study the transport of field emission through the front end, including the effectiveness of collimators. Machine measurements of dark current are compared against these simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB088  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK106 Low Power RF Characterisation of the 400 Hz Photoinjector for CLARA 4342
 
  • L.S. Cowie, P. Goudket, B.L. Militsyn
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • G. Burt
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
 
  The CLARA High Repetition Rate Photoinjector comprises an S-band dual feed cavity and will operate at a repetition rate of up to 400 Hz and is capable of reaching an electric field strength on the cathode of 120 MV/m. The cavity was brazed after tuning and arrived at Daresbury Laboratory in February 2016. Extensive low power RF testing has been performed including measurements of the quality factors and coupling, pass-band mode frequencies, on axis field and RF repeatability of replacement of cathode plug. The dual feed coupler has been tuned and a Magic Tee type splitter installed. The photoinjector is now installed on the VELA beam line for commissioning and characterisation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK107 Design and Characterisation of the Focusing Solenoidal System for the CLARA High Repetition Rate Electron Source 4346
 
  • D.J. Scott, A.R. Bainbridge, K.B. Marinov, B.L. Militsyn, B.J.A. Shepherd
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • R.J. Cash, T.J. Jones
    STFC/DL, Daresbury, Warrington, Cheshire, United Kingdom
  • C.S. Edmonds
    The University of Liverpool, Liverpool, United Kingdom
 
  One of the critical components of electron injectors based on RF photoelectron sources is the focusing system. The system typically consists of a Main Focusing Solenoid and a Bucking Coil. Combination of these two solenoids should provide proper focusing of the beam at the exit of the RF cavity and zero longitudinal magnetic field in the photocathode plane to minimise the beam emittance. Imperfection of the solenoid design, manufacturing and alignment frequently leads to asymmetry of the focusing field which has to be compensated with additional coils. In order to eliminate mechanical and magnetic misalignment the CLARA photoinjector solenoids are mounted on one integrated bench and before installation into the beamline have been aligned in the magnet laboratory with simultaneous measurement of the magnetic field. In order to define multipole field components, dedicated measurements of the transverse magnetic field have been done. The amplitudes of the multipoles have been obtained from analysis of the transverse field map. We present here the results of field characterisation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK107  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)