Author: Mikulec, B.
Paper Title Page
MOPAB120 Beam Instrumentation for the CERN LINAC4 and PSB Half Sector Test 408
 
  • F. Roncarolo, J.C. Allica Santamaria, M. Bozzolan, C. Bracco, S. Burger, G.J. Focker, G. Guidoboni, L.K. Jensen, B. Mikulec, A. Navarro Fernandez, U. Raich, J.B. Ruiz, L. Søby, J. Tan, W. Viganò, C. Vuitton, C. Zamantzas
    CERN, Geneva, Switzerland
  • T. Hofmann
    Royal Holloway, University of London, Surrey, United Kingdom
 
  The construction, installation and initial commissioning of CERN's LINAC4 was completed in 2016 with H ions successfully accelerated to its top energy of 160 MeV. The accelerator is equipped with a large number of beam diagnostic systems that are essential to monitor, control and optimize the beam parameters. A general overview of the installed systems and their functional specifications will be followed by a summary of the most relevant results. This includes transverse profile monitors (wire scanners, wire grids and a laser profile monitor), beam position and phase monitors (whose ToF measurements were essential for adjusting RF cavity parameters), beam loss monitors, beam current transformers and longitudinal beam shape monitors. This contribution will also cover the beam instrumentation for the so-called PSB Half Sector Test, which has been temporarily installed in the LINAC4 transfer line to study H stripping efficiency. At this facility it was possible to test the new H0/H beam current monitor, designed to monitor the stripping efficiency and an essential element of the beam interlock system when the LINAC4 is connected to the PSB in 2019.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB120  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK041 Commissioning of the Stripping Foil Units for the Upgrade of the PSB H Injection System 595
 
  • C. Bracco, S. Burger, V. Forte, B. Goddard, G. Guidoboni, L.O. Jorat, B. Mikulec, A. Navarro Fernandez, R. Noulibos, F. Roncarolo, P. Van Trappen, W.J.M. Weterings
    CERN, Geneva, Switzerland
 
  The PSB will be extensively upgraded during the next long shutdown of the CERN accelerator complex, to double the brightness of the stored beams. The existing multi-turn injection will be replaced by a charge exchange system designed for the 160 MeV hydrogen ions provided by Linac4. Part of the injection equipment has been temporarily installed along the Linac4-to-PSB transfer line and tested with beam. This allowed to gain experience with the system, test the related diagnostics and benchmark calculations with measurements. An additional permanent stripping foil test stand is also installed right after the Linac and will be used to characterise new foils for possible future applications. The main outcomes, issues and applied or planned mitigations are presented for both installations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK047 Commissioning and Results of the Half-Sector Test Installation with 160 MeV H beam from Linac4 619
 
  • B. Mikulec, D. Aguglia, J.C. Allica Santamaria, C. Baud, C. Bracco, S. Burger, G. Guidoboni, L.O. Jorat, C. Martin, A. Navarro Fernandez, R. Noulibos, F. Roncarolo, J.L. Sanchez Alvarez, J. Tan, T. Todorcevic, P. Van Trappen, W.J.M. Weterings, C. Zamantzas
    CERN, Geneva, Switzerland
 
  During the Long Shutdown 2 (LS2) at CERN in 2019/20, the Proton Synchrotron Booster (PSB) will undergo a profound upgrade in the framework of the LHC Injector Upgrade (LIU) project involving also the connection to the new Linac4 injector. The 160 MeV Linac4 H' injection entails a complete replacement of the PSB injection section, including a stripping foil system, injection chicane, an H0/H' dump and novel beam instrumentation. The equivalent of half of this new injection chicane was temporarily installed in the Linac4 transfer line to evaluate the performance of the equipment and prepare controls, interlocks and applications for the connection. Outcomes of this so-called Half-Sector Test (HST) are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA035 The PSB Operational Scenario with Longitudinal Painting Injection in the Post-LIU Era 3331
 
  • V. Forte, S.C.P. Albright, M.E. Angoletta, P. Baudrenghien, E. Benedetto, A. Blas, C. Bracco, C. Carli, A. Findlay, R. Garoby, G. Hagmann, A.M. Lombardi, B. Mikulec, M.M. Paoluzzi, J.L. Sanchez Alvarez, R. Wegner
    CERN, Geneva, Switzerland
 
  Longitudinal painting has been presented as an elegant technique to fill the longitudinal phase space at injection to the CERN PSB once it is connected with the new Linac4. Painting brings several advantages related to a more controlled longitudinal filamentation, lower peak line density and beating reduction, resulting in a smaller space-charge tune spread. This could be an advantage especially for high intensity beams (> 6·1012 protons per bunch) to limit losses on the transverse acceptance of the machine. This paper presents an overview on the possible advantages of the technique for operational and test beams, taking care of the hardware limitations and possible failure scenarios.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA036 The LHC Injectors Upgrade (LIU) Project at CERN: Proton Injector Chain 3335
 
  • K. Hanke, J. Coupard, H. Damerau, A. Funken, B. Goddard, A.M. Lombardi, D. Manglunki, S. Mataguez, M. Meddahi, B. Mikulec, G. Rumolo, R. Scrivens, E.N. Shaposhnikova, M. Vretenar
    CERN, Geneva, Switzerland
 
  The LHC Injectors Upgrade (LIU) project at CERN aims at delivering high brightness beams required by the LHC in the high-luminosity LHC (HLLHC) era. The project comprises a new H Linac (Linac4) as well as a massive upgrade of the PS Booster, PS and SPS synchrotrons. This paper gives an update of the activities regarding the proton injector chain. We present the target beam parameters, a brief status of the upgrade work per machine and the outcome of the recent reviews. The planning for the implementation of the hardware upgrades and the re-commissioning of the complex will also be discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA036  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA037 Machine Development Studies in the CERN PS Booster, in 2016 3339
 
  • E. Benedetto, S.C.P. Albright, M.E. Angoletta, W. Bartmann, J.M. Belleman, A. Blas, M. Cieslak-Kowalska, G.P. Di Giovanni, A. Findlay, V. Forte, A. Garcia-Tabares, G. Guidoboni, S. Hancock, M. Jaussi, B. Mikulec, J.C. Molendijk, A. Oeftiger, T.L. Rijoff, F. Schmidt, P. Zisopoulos
    CERN, Geneva, Switzerland
  • M. Cieslak-Kowalska
    EPFL, Lausanne, Switzerland
  • P. Zisopoulos
    Uppsala University, Uppsala, Sweden
 
  The paper presents the outstanding studies performed in 2016 in preparation of the PS Booster upgrade, within the LHC Injector Upgrade project (LIU), to provide twice higher brightness and intensity to the High-Luminosity LHC. Major changes include the increase of injection and extraction energy, the implementation of a H charge-exchange injection system, the replacement of the present Main Power Supply and the deployment of a new RF system (and related Low-Level), based on the Finemet technology. Although the major improvements will be visible only after the upgrade, the present machine can already benefit of the work done, in terms of better brightness, transmission and improved reproducibility of the present operational beams. Studies address the space-charge limitations at low energy, for which a detailed optics model is needed and for which mitigation measurements are under study, and the blow-up reduction at injection in the downstream machine, for which the beams need careful preparation and transmission. Moreover they address the requirements and the reliability of new beam instrumentation and hardware that is being installed in view of LIU.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)