Paper | Title | Page |
---|---|---|
TUOBB3 | HORIZON 2020 EuPRAXIA Design Study | 1265 |
|
||
The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. | ||
![]() |
Slides TUOBB3 [9.269 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPVA001 | Electron Injector for Multi-Stage Laser-Driven Plasma Accelerators | 3244 |
|
||
Funding: LAbex PALM, Labex P2IO, Triangle de la Physique, ANR grant Equipex CILEX APOLLON, EU H2020 research and innovation programme under grant agreement No. 653782 EUPRAXIA. An electron injector in the 50-200 MeV range, based on laser wakefield acceleration, is studied in the context of multi-stage laser plasma acceleration. Test experiments carried out at the UHI100 laser facility show that electron bunches in the 100 MeV range, generated by ionization-induced injection mechanism, and accelerated by laser driven wakefield in a mm-scale length plasma can be transported using a magnetic line and precisely analysed. A comparison with simulation results provides insights on electron dynamics and indicates ways to optimize the injector. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA001 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB093 | Synchronization of a Photo-Injector and a High Power Laser With Independent Clocks | 3935 |
|
||
Funding: LAL/IN2P3/CNRS and Université Paris-Sud The plasma acceleration project ESCULAP (ElectronS CoUrts pour L'Acc\'el\'eration Plasma) aims at studying electrons injection into a laser plasma accelerator. This requires the injection of short electron bunches generated by the photo injector PHIL (Photo injector at LAL) into a plasma wave by the high power femtosecond Laser LASERIX. As a first step we have studied how to synchronize PHIL and LASERIX. As these two machines had not been initially designed to work together, simple synchronization solutions were not available. We detail here the synchronisation scheme that we have tested and the experimental results obtained. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB093 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |