Author: Madrak, R.L.
Paper Title Page
THPIK113 Tuner of a Second Harmonic Cavity of the Fermilab Booster 4362
 
  • I. Terechkine, K.L. Duel, R.L. Madrak, A.V. Makarov, G.V. Romanov, D. Sun, C.-Y. Tan
    Fermilab, Batavia, Illinois, USA
 
  Introducing a second harmonic cavity in the accelerating system of the Fermilab Booster promises significant reduction of the particle beam loss during the injection, transition, and extraction stages. To follow the changing energy of the beam during acceleration cycles, the cavity is equipped with a tuner that employs perpendicularly biased AL800 garnet material as the frequency tuning media. The required tuning range of the cavity is from 75.73 MHz at injection to 105.64 MHz at extraction. This large range necessitates the use of a relatively low bias magnetic field at injection, which could lead to high RF loss power density in the garnet, or a strong bias magnetic field at extraction, which could result in high power consumption in the tuner's bias magnet. The required 15 Hz repetition rate of the device and high sensitivity of the local RF power loss to the level of the magnetic field added to the challenges of the bias system design. In this report, the main features of a proposed prototype of the second harmonic cavity tuner are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK115 Status of the Perpendicular Biased 2nd Harmonic Cavity for the Fermilab Booster 4366
 
  • C.-Y. Tan, J.E. Dey, K.L. Duel, J. Kuharik, R.L. Madrak, A.V. Makarov, W. Pellico, J. Reid, G.V. Romanov, M. Slabaugh, D. Sun, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  Funding: Operated by Fermi Research Alliance, LLC under Contract No. DE-AC02-07CH11359 with the United States Department of Energy.
This is a status report on the 2nd harmonic cavity for the Fermilab Booster as part of the Proton Improvement Plan (PIP) for increasing beam transmission efficiency, and thus reducing losses. A set of tuner rings has been procured and is undergoing quality control tests. The Y567 tube for driving the cavity has been successfully tested at both injection and extraction frequencies. A cooling scheme for the tuner and cavity has been developed after a thorough thermal analysis of the system. RF windows have been procured and substantial progress has been made on the mechanical designs of the cavity and the bias solenoid. The goal is to have a prototype cavity ready for testing by the end of 2017.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK116 Static Magnetization Properties of AL800 Garnet Material 4370
 
  • J. Kuharik, R.L. Madrak, A.V. Makarov, W. Pellico, D. Sun, C.-Y. Tan, I. Terechkine
    Fermilab, Batavia, Illinois, USA
 
  A second harmonic tunable RF cavity is being developed for the Fermilab Booster. This device, which promises reduction of the particle beam loss at the injection, transition, and extraction stages, employs perpendicularly biased garnet material for the frequency tuning. The required range of the tuning is significantly wider than in previously built and tested tunable RF devices. As a result, the magnetic field in the garnet becomes fairly close to the gyromagnetic resonance line at the lower end of the frequency range. The chosen design concept of a tuner for the cavity cannot ensure uniform magnetic field in the garnet material; thus it is important to know the static magnetic properties of the material to avoid significant increase in the local RF loss power density. This report summarizes studies performed at Fermilab to understand variations in the magnetic properties of the AL-800 garnet material used to build the tuner of the cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)