Author: Lou, W.
Paper Title Page
TUOCB3 CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator 1285
 
  • D. Trbojevic, S. Bellavia, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, F.X. Karl, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.G. Eichhorn, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, B.K. Heltsley, G.H. Hoffstaetter, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • D. Jusic, J.R. Patterson
    Cornell University, Ithaca, New York, USA
 
  Funding: New York State Energy Research and Development Authority (NYSERDA)
Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section.
 
slides icon Slides TUOCB3 [41.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA094 Permanent Halbach Magnet Proton and Superconducting Carbon Cancer Therapy Gantries 4679
 
  • D. Trbojevic, S.J. Brooks, B. Parker, N. Tsoupas
    BNL, Upton, Long Island, New York, USA
  • W. Lou
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Hadron cancer therapy facilities are expanding exponentially as advantages with respect to other radiation treatments are localized energy deposition at the tumor and reduction of side effects. The main problem of expansion is the high cost and large size of the facility. The largest cost is the delivery systems, especially isocentric gantries. We present first, the permanent Halbach gantry with significant reduction in cost and simplified operation as all treatment energies are transported from an accelerator to the patient through the same Fixed Field Alternating Gradient (FFAG) structure. The superconducting FFAG gantry also transports at one setting all energies required for the cancer treatment of the patient with carbon ions.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA143 Beam-Breakup Studies for the 4-Pass Cornell-Brookhaven Energy Recovery LINAC Test Accelerator 4801
 
  • W. Lou, J.A. Crittenden, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell University and Brookhaven National Laboratory are currently designing the Cornell-BNL ERL Test Accelerator (CBETA). To be built at Cornell's Wilson Lab, CBETA utilizes the existing ERL injector and main linac cryomodule (MLC). As the electron bunches pass through the MLC cavities, higher order modes (HOMs) are excited. The recirculating bunches interact with the HOMs, which can give rise to beam-breakup instability (BBU). Here we present simulation results on how BBU limits the maximum achievable current, and potential ways to improve the threshold current.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)