Author: Liu, C.
Paper Title Page
MOPAB154 Measurement of Proton Transverse Emittance in the Brookhaven AGS 494
 
  • H. Huang, L. Ahrens, C.W. Dawson, C.E. Harper, C. Liu, F. Méot, M.G. Minty, V. Schoefer, S. Tepikian, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
High luminosity and high polarization in RHIC require good control and measurement of emittance in its injector, the Brookhaven AGS. In the past, the AGS emittance has been measured by using an ion collecting IPM during the whole cycle. The beam profiles from this IPM are distorted by space charge forces at higher energy, which makes the emittance determination very hard. The effect has been measured with IPM measurement at different energies with RF off to mitigate the space charge effect. In addition, helical snake magnets and near integer vertical tune for polarized proton operation distort the lattice in the AGS and introduce large beta beating. For more precise measurements of the emittance, we need turn-by-turn (TBT) measurements near injection and beta function measurements at the IPM. The AGS has also been modeled to get the beta functions at the locations of IPM. A new type of electron collecting IPM has been installed and tested in the AGS with proton beam. The vertical beta functions at the IPM locations have been measured with a local corrector near the IPM. This paper summarizes our current understanding of AGS emittances and plans for the further improvements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB154  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB3 CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator 1285
 
  • D. Trbojevic, S. Bellavia, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, F.X. Karl, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.G. Eichhorn, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, B.K. Heltsley, G.H. Hoffstaetter, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • D. Jusic, J.R. Patterson
    Cornell University, Ithaca, New York, USA
 
  Funding: New York State Energy Research and Development Authority (NYSERDA)
Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section.
 
slides icon Slides TUOCB3 [41.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA045 Compensation of Head-on Beam-Beam Induced Resonance Driving Terms and Tune Spread in the Relativistic Heavy Ion Collider 2171
 
  • W. Fischer, X. Gu, C. Liu, Y. Luo, A. Marusic, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, A.I. Pikin, G. Robert-Demolaize, V. Schoefer, P. Thieberger
    BNL, Upton, Long Island, New York, USA
  • S.M. White
    ESRF, Grenoble, France
 
  Funding: Work supported by U.S. DOE under contract No DE-AC02-98CH10886 with the U.S. Department of Energy.
A head-on beam-beam compensation scheme was implemented for operation in the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory. The compensation consists of a lattice for the minimization of beam-beam driven resonance driving terms, and electron lenses for the reduction of the beam-beam induced tune spread. We describe the implementations of the lattice and electron lenses, and report on measurements of lattice properties and the effect of the electron lenses on the hadron beam.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA046 Beam Energy Scan With Asymmetric Collision at RHIC 2175
 
  • C. Liu, J.G. Alessi, E.N. Beebe, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, Y. Hao, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, J.P. Jamilkowski, J.S. Laster, V. Litvinenko, Y. Luo, M. Mapes, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, I. Pinayev, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, Q. Wu, A. Zaltsman, K. Zeno, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA047 IBS Simulation with Different RF Configurations in RHIC 2178
 
  • C. Liu, A.V. Fedotov, M.G. Minty, V. Ptitsyn
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
This report focuses on three dimensional emittance growth of polarized proton beam due to Intra-Beam Scattering (IBS) at RHIC. Simulations are presented which give guidance on the configuration of the RF systems to mitigate IBS-induced emittance growth. In addition, simulated growth rates are compared with measured emittance evolution at injection, which shows better agreement in longitudinal than transverse dimension. The results in this report will help us better understand the emittance evolution for current RHIC operations and for future operations (eRHIC).
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA050 RHIC Polarized Proton Operation for 2017 2188
 
  • V.H. Ranjbar, P. Adams, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, M.R. Costanzo, T. D'Ottavio, K.A. Drees, P.S. Dyer, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, P. Oddo, M. Okamura, S. Perez, A.I. Pikin, A. Poblaguev, S. Polizzo, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, Z. Sorrell, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang, B. van Kuik
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract number DE-SC0012704
The 2017 operation of the Relativistic Heavy Ion Collider (RHIC) involved the running of only a single experiment at STAR with PHENIX offline in the process of the upgrade to sPHENIX. For this run there were several notable changes to machine operations. These included, transverse polarization, luminosity leveling, a new approach to machine protection and the development of new store and ramped lattices. The new 255 GeV store lattice was designed to both accommodate the necessary phase advance between the e-lens and IP8 for testing and to maximize dynamic aperture. The new lattices on the ramp were designed to maximize polarization transmission during the three strong intrinsic spin resonances crossings. Finally we are also commissioning new 9 MHz RF cavities during this run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA149 AGS Polarized Proton Operation Experience in RHIC Run17 2452
 
  • H. Huang, P. Adams, J. Beebe-Wang, M. Blaskiewicz, K.A. Brown, C.J. Gardner, C.E. Harper, C. Liu, F. Méot, J. Morris, A. Poblaguev, V.H. Ranjbar, D. Raparia, T. Roser, V. Schoefer, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternating Gradient Synchrotron (AGS). The relatively weak but numerous horizontal resonances are overcome by a pair of horizontal tune jump quads. 70% proton polarization has been achieved for 2·1011 intensity. Further gain can come from maintaining smaller transverse emittance with same beam intensity. The main efforts now are to reduce the transverse emittance in the AGS and Booster, as well as robust jump quads timing generation scheme. This paper summarizes the operation results in the injectors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA041 Rematching AGS Booster Synchrotron Injection Lattice for Smaller Transverse Beam Emittances 3353
 
  • C. Liu, J. Beebe-Wang, K.A. Brown, C.J. Gardner, H. Huang, M.G. Minty, V. Schoefer, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The polarized proton beam is injected into the booster via the charge-exchange (H to H+) scheme. The emittance growth due to scattering at the stripping foil is proportional to the beta functions at the foil. It was demonstrated that the current scheme of reducing the beta functions at the stripping foil preserves the emittance better, however the betatron tunes are above but very close to half integer. Due to concern of space charge and half integer in general, options of lattice designs aimed towards reducing the beta functions at the stripping foil with tunes at more favorable places are explored.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)