Paper | Title | Page |
---|---|---|
MOPVA140 | Multipacting Behavior Study for the 112 MHz Superconducting Photo-Electron Gun | 1180 |
SUSPSIK105 | use link to see paper's listing under its alternate paper code | |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. Superconducting 1.2 MV 112 MHz quarter-wave photo-electron gun (SRF gun) is used as a source of electron beam for the Coherent electron Cooling experiment (CeC) at BNL. During the CeC commissioning we encountered a number of multipacting zones in the gun. It was also observed that introduction of CsK2Sb photocathode creates additional multipacting zone. This paper presents numerical and experimental study of the multipactor discharge in the SRF gun. We also discuss ways of crossing the multipacting levels to the operational voltage. Finally, we compare the results of our numerical simulations of the multipactor discharge using ACE3P with experimental data. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA140 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUOBB3 | HORIZON 2020 EuPRAXIA Design Study | 1265 |
|
||
The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. | ||
![]() |
Slides TUOBB3 [9.269 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA046 | Beam Energy Scan With Asymmetric Collision at RHIC | 2175 |
|
||
Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy. A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report. |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA046 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
THPAB087 | Emittance Measurements and Simulations in 112 MHz Super-Conducting RF Electron Gun With CsK2Sb Photo-Cathode | 3921 |
SUSPSIK063 | use link to see paper's listing under its alternate paper code | |
|
||
The commissioning of the coherent electron cooling (CeC) proof of principle experiment is under way at Relativistic Heavy Ion Collider (RHIC).. A 112 MHz superconducting radio frequency photo-emission gun is used to generate the electron beam for this experiment. In this paper we report selected results of experimental emittance measurements and compare them with our simulations. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB087 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |