Author: Litvinenko, V.
Paper Title Page
MOPVA140 Multipacting Behavior Study for the 112 MHz Superconducting Photo-Electron Gun 1180
SUSPSIK105   use link to see paper's listing under its alternate paper code  
 
  • I. Petrushina
    SUNY SB, Stony Brook, New York, USA
  • V. Litvinenko, G. Narayan, I. Pinayev, F. Severino, K.S. Smith
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Superconducting 1.2 MV 112 MHz quarter-wave photo-electron gun (SRF gun) is used as a source of electron beam for the Coherent electron Cooling experiment (CeC) at BNL. During the CeC commissioning we encountered a number of multipacting zones in the gun. It was also observed that introduction of CsK2Sb photocathode creates additional multipacting zone. This paper presents numerical and experimental study of the multipactor discharge in the SRF gun. We also discuss ways of crossing the multipacting levels to the operational voltage. Finally, we compare the results of our numerical simulations of the multipactor discharge using ACE3P with experimental data.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA140  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB3 HORIZON 2020 EuPRAXIA Design Study 1265
 
  • P.A. Walker, R.W. Aßmann, J. Bödewadt, R. Brinkmann, J. Dale, U. Dorda, A. Ferran Pousa, A.F. Habib, T. Heinemann, O. S. Kononenko, C. Lechner, B. Marchetti, A. Martinez de la Ossa, T.J. Mehrling, P. Niknejadi, J. Osterhoff, K. Poder, E.N. Svystun, G.E. Tauscher, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, M. Ferrario, F. Filippi, A. Gallo, A. Mostacci, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, P. Delinikolas, B. Hidding, D.A. Jaroszynski, F.Y. Li, G.G. Manahan, P. Scherkl, Z.M. Sheng, M.K. Weikum
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, M. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, B. Patrizi, G. Toci, M. Vannini
    INO-CNR, Pisa, Italy
  • O. Bringer, A. Chancé, O. Delferrière, J. Fils, D. Garzella, P. Gastinel, X. Li, A. Mosnier, P.A.P. Nghiem, J. Schwindling, C. Simon
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • M. Chen, L. Yu
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, U. Sinha, J. Vieira
    IPFN, Lisbon, Portugal
  • K. Ertel, M. Galimberti, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Fils
    GSI, Darmstadt, Germany
  • A. Giribono
    INFN-Roma, Roma, Italy
  • L.A. Gizzi
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, T. Heinemann, B. Hidding, O.S. Karger, A. Knetsch, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • S.M. Hooker, R. Walczak
    JAI, Oxford, United Kingdom
  • T. Hosokai
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    HIJ, Jena, Germany
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate, P. Tomassini
    CNR/IPP, Pisa, Italy
  • W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • A. Lifschitz, V. Malka, F. Massimo
    LOA, Palaiseau, France
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • V. Malka
    Ecole Polytechnique, Palaiseau, France
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Marocchino, A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • K. Masaki, Y. Sano
    JAEA/Kansai, Kyoto, Japan
  • U. Schramm
    HZDR, Dresden, Germany
  • M.J.V. Streeter, A.G.R. Thomas
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.  
slides icon Slides TUOBB3 [9.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA046 Beam Energy Scan With Asymmetric Collision at RHIC 2175
 
  • C. Liu, J.G. Alessi, E.N. Beebe, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, J.J. Butler, R. Connolly, T. D'Ottavio, K.A. Drees, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, Y. Hao, M. Harvey, T. Hayes, H. Huang, R.L. Hulsart, P.F. Ingrassia, J.P. Jamilkowski, J.S. Laster, V. Litvinenko, Y. Luo, M. Mapes, G.J. Marr, A. Marusic, G.T. McIntyre, K. Mernick, R.J. Michnoff, M.G. Minty, C. Montag, J. Morris, C. Naylor, S. Nemesure, I. Pinayev, V.H. Ranjbar, D. Raparia, G. Robert-Demolaize, T. Roser, P. Sampson, J. Sandberg, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, Q. Wu, A. Zaltsman, K. Zeno, S.Y. Zhang, W. Zhang
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
A beam energy scan of deuteron-gold collision, with center-of-mass energy at 19.6, 39, 62.4 and 200.7 GeV/n, was performed at the Relativistic Heavy Ion Collider in 2016 to study the threshold for quark-gluon plasma (QGP) production. The lattice, RF, stochastic cooling and other subsystems were in different configurations for the various energies. The operational challenges changed with every new energy. The operational experience at each energy, the operation performance, highlights and lessons of the beam energy scan are reviewed in this report.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB087 Emittance Measurements and Simulations in 112 MHz Super-Conducting RF Electron Gun With CsK2Sb Photo-Cathode 3921
SUSPSIK063   use link to see paper's listing under its alternate paper code  
 
  • K. Mihara
    Stony Brook University, Stony Brook, USA
  • D. Kayran, V. Litvinenko, T.A. Miller, I. Pinayev
    BNL, Upton, Long Island, New York, USA
 
  The commissioning of the coherent electron cooling (CeC) proof of principle experiment is under way at Relativistic Heavy Ion Collider (RHIC).. A 112 MHz superconducting radio frequency photo-emission gun is used to generate the electron beam for this experiment. In this paper we report selected results of experimental emittance measurements and compare them with our simulations.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB087  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)