Author: Liarte, D.
Paper Title Page
MOPVA116 Quench Studies in Single-Cell Nb3Sn Cavities Coated Using Vapour Diffusion 1119
 
  • D.L. Hall, M. Liepe, J.T. Maniscalco, R.D. Porter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • P. Cueva, D. Liarte, D.A. Muller, J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  The superconductor Nb3Sn is known to have a superheating field, Hsh, of approximately 400 mT. This critical field represents the ultimate achievable gradient in a superconducting cavity, and is equivalent to an accelerating gradient of 90 MV/m in an ILC single-cell cavity for this value of Hsh. However, the currently best performing Nb3Sn single-cell cavities remain limited to accelerating gradients of 17-18 MV/m, translating to a peak surface magnetic field of approx. 70 mT. In this paper, we consider theoretical models of candidate quench mechanisms, and compare them to experimental data from surface analysis and cavity tests.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA116  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA118 Impact of Trapped Magnetic Flux and Thermal Gradients on the Performance of Nb3Sn Cavities 1127
SUSPSIK103   use link to see paper's listing under its alternate paper code  
 
  • D.L. Hall, M. Liepe
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Liarte, J.P. Sethna
    Cornell University, Ithaca, New York, USA
 
  Trapped magnetic flux is known to degrade the quality factor of superconducting cavities by increasing the surface losses ascribed to the residual resistance. In Nb3Sn cavities, which consist of a thin layer of Nb3Sn coated on a bulk niobium substrate, the bimetallic interface results in a thermal current being generated in the presence of a thermal gradient, which will in turn generate flux that can be trapped. In this paper we quantify the impact of trapped flux, from either ambient fields or thermal gradients, on the performance of the cavity. We discover that the sensitivity to trapped flux, a measure of the increase in residual resistance as a function of the amount of flux trapped, is a function of the accelerating gradient. A theoretical framework to explain this phenomenon is proposed, and the impact on the requirements for operating a Nb3Sn cavity in a cryomodule are considered.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA118  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)