Author: Li, Y.
Paper Title Page
TUOBA1 Beam Commissioning Results of the CSNS Linac 1223
 
  • J. Peng, Y.W. An, S. Fu, L. Huang, M.Y. Huang, Y. Li, Z.P. Li, S. Wang, S.Y. Xu, Y. Yuan
    IHEP, Beijing, People's Republic of China
  • M.T. Li, Y.D. Liu
    CSNS, Guangdong Province, People's Republic of China
 
  The China Spallation Neutron Source(CSNS) accelera-tor systems is designed to deliver a 1.6GeV, 100kW pro-ton beam to a solid metal target for neutron scattering research. It consists of a 50keV H Ion Source, a 3MeV Radio Frequency Quadrupole (RFQ), an 80MeV Drift Tube Linac (DTL), and a 1.6GeV Rapid-cycling Synchro-tron (RCS). The beam commissioning has been started since April 2015. The Front End and three of the four DTL tanks have been commissioned, while the last tank and the RCS will be commissioned at the autumn this year. At the end of the DTL3, beam has been accelerated to 61MeV with nearly 100% transmission, other parame-ters such as peak current, transverse emittance and beam orbit have reached the design goal. Results and status of the beam commissioning program will be presented.
*This work is supported by National Natural Science Foundation of China (11505101).
**E-mail:pengjun@ihep.ac.cn
 
slides icon Slides TUOBA1 [4.272 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA098 Beam Commissioning of Transport Line LRBT of CSNS 2314
 
  • Z.P. Li, Y. Li, J. Peng, S. Wang
    IHEP, Beijing, People's Republic of China
 
  The linac to ring beam transport line (LRBT) connects the 80 MeV linac and the 1.6 GeV rapid cycling synchrotron (RCS) of the China spallation neutron source (CSNS). The linac and LRBT commissioning have been in progress in the past months and the H beam has been accelerated to the kinetic energy of 60MeV this April. The H beam in LRBT which was measured and commissioned transported through the long beam line with low loss. The beam commissioning process and results of LRBT are presented and discussed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA093 Open XAL Status Report 2017 4676
 
  • A.P. Zhukov, C.K. Allen, A.P. Shishlo
    ORNL, Oak Ridge, Tennessee, USA
  • D.A. Brown
    NMSU, Las Cruces, New Mexico, USA
  • Y.-C. Chao
    SLAC, Menlo Park, California, USA
  • C.P. Chu, Y. Li
    IHEP, Beijing, People's Republic of China
  • J.F. Esteban Müller, B.T. Folsom, E. Laface, Y.I. Levinsen, C. Rosati
    ESS, Lund, Sweden
  • P. Gillette, P. Laurent, E. Lécorché, G. Normand
    GANIL, Caen, France
  • I. List, M. Pavleski
    Cosylab, Ljubljana, Slovenia
  • X.H. Lu
    CSNS, Guangdong Province, People's Republic of China
  • J.E. Muller
    CERN, Geneva, Switzerland
 
  The Open XAL accelerator physics software platform is being developed through an international collaboration among several facilities since 2010 The goal of the collaboration is to establish Open XAL as a multi-purpose software platform supporting a broad range of tool and application development in accelerator physics (Open XAL also ships with a suite of general purpose accelerator applications). This paper discusses progress in beam dynamics simulation, interaction with control system and software organization. We present the current status of the project, a roadmap for continued development and an overview of the project status at each participating facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA093  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)