Author: Lens, D.E.M.
Paper Title Page
TUPIK048 Longitudinal Beam Stabilization at FAIR by Means of a Derivative Estimation 1795
 
  • B.R. Reichardt, D. Domont-Yankulova
    Technische Universität Darmstadt (TU Darmstadt, RMR), Darmstadt, Germany
  • D. Domont-Yankulova, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil, D.E.M. Lens
    GSI, Darmstadt, Germany
 
  Funding: Supported by the GSI
During acceleration in SIS18/SIS100 at GSI/FAIR longitudinal beam-oscillations are expected to occur. To reduce emittance blow-up, dedicated LLRF beam feedback systems are planned. To date longitudinal beam oscillations have been damped in machine experiments with a finite-impulse-response (FIR) filter controller with 3 filter taps[1]. An alternative approach implementing the FIR filter as a derivative estimator controller is simulated and tested. This approach shares the same controller topology and can therefore be easily integrated in the system. It exploits the fact that the sampling rate of the feedback hardware is considerably higher than the frequency of the beam oscillations. It is therefore capable of damping oscillations without overshoot within one oscillation period.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB097 Phase Calibration of Synchrotron RF Signals 3945
 
  • A. Andreev, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil, D.E.M. Lens
    GSI, Darmstadt, Germany
 
  In the scope of FAIR's scientific program higher beam intensities will be achieved and several new synchrotrons (including storage rings) are being built. The low-level RF (LLRF) systems of FAIR have to support multi-harmonic operations, barrier bucket generation and bunch compression in order to meet the desired beam quality requirements. All this imposes several requirements on the LLRF systems. For example the phase error of the gap voltage of a specific RF cavity must be less than 3 degrees. Thus, each individual component must have a better accuracy. The RF reference signals for the FAIR synchrotron RF cavity systems are generated by direct digital synthesis (DDS). Four so-called Group DDS modules are mounted in one crate. In the supply rooms, the reference signals of such a crate are then distributed to local cavity LLRF systems. Therefore, the precise phase calibration of Group DDS modules is of importance. A phase calibration method with respect to the absolute phases of DDS modules defined by means of the FAIR Bunch Phase Timing System (BuTiS) is developed, and its precision is under evaluation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB100 On the Impact of Empty Buckets on the Ferrite Cavity Control Loop Dynamics in High Intensity Hadron Synchrotrons 3954
 
  • D. Mihailescu Stoica, D. Domont-Yankulova
    Technische Universität Darmstadt (TU Darmstadt, RMR), Darmstadt, Germany
  • D. Domont-Yankulova, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil, D.E.M. Lens
    GSI, Darmstadt, Germany
 
  Funding: Supported by the Helmholtz Graduate School for Hadron and Ion Research
Due to technical reasons two of ten buckets have to stay empty in the planned SIS100 synchrotron at the GSI Helmholtzzentrum für Schwerionenforschung. The planned low level RF control systems consist of linear P and PI type controllers. These are responsible to maintain a desired phase and amplitude of the gap voltage. In addition the cavity is controlled to follow a prescribed resonance frequency ramp. In SIS100 the acceleration will be performed by ferrite cavities with comparatively small quality factors. Therefore, effects resulting from transient beam loading have to be expected. Influences due to empty buckets are analysed in the frequency domain and particle tracking simulations are carried out to estimate the effect on the overall system with particular consideration of emittance growth and particle loss.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK016 Status of the SIS100 RF Systems 4136
 
  • H. Klingbeil, R. Balß, M. Frey, P. Hülsmann, A. Klaus, H.G. König, U. Laier, D.E.M. Lens, K.-P. Ningel
    GSI, Darmstadt, Germany
 
  Four different types of RF cavities are realized for the heavy-ion synchrotron SIS100 which is built in the scope of the FAIR (Facility for Antiproton and Ion Research) project. The standard acceleration is performed by ferrite cavities. Barrier bucket cavities will allow a pre-compression of the beam by means of moving barriers. Bunch compressor cavities are used to realize a rotation in longitudinal phase space by 90 degrees, thereby reducing the bunch length. Finally, a longitudinal feedback system reduces undesired beam oscillations. In contrast to the ferrite-loaded accelerating cavities, the last-mentioned three cavity types are based on magnetic alloy (MA) material. Depending on the type of the cavity system, the realization is done by - or in close collaboration with - different industrial companies and institutions. In this contribution, the realization status of all these synchrotron RF systems is summarized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)