Paper | Title | Page |
---|---|---|
TUOBB3 | HORIZON 2020 EuPRAXIA Design Study | 1265 |
|
||
The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020. | ||
![]() |
Slides TUOBB3 [9.269 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA082 | Spin Tracking for a Deuteron EDM Storage Ring | 2267 |
|
||
The purpose of the Jülich Electric Dipole moment Investigations (JEDI) collaboration is the measurement of the electric dipole moment (EDM) of charged particles like deuterons. There are two possible experimental setups under consideration for realization of this measurement with deuterons: The Frozen and Quasi Frozen Spin storage ring experiments. Both approaches are discussed and compared in this presentation. Various misalignments and systematic effects are simulated in the context of comparison. Furthermore the clockwise-counterclockwise method (CW-CCW) is applied and checked for its validity. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA082 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
TUPVA083 | Analysis of Closed-Orbit Deviations for a First Direct Deuteron Electric Dipole Moment Measurement at the Cooler Synchrotron COSY | 2271 |
|
||
This presentation investigates closed orbit influencing effects focusing on transverse orbit deviations. Using a model of the Cooler Synchrotron COSY at the Forschungszentrum Jülich implemented in the Methodical Accelerator Design program, several magnet misalignments are simulated and analyzed. A distinction is made between magnet displacements along the axes and rotations around them. Results are always analyzed for the uncorrected as well as for the orbit after the application of an orbit correction. Furthermore, the effect of displaced beam position monitors is simulated and a constraint resolution of their readout is considered. Besides magnet misalignments also field variations resulting from residual power supply oscillations are quantified for all types of magnets. | ||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA083 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |
WEPIK067 | Beam-Dynamics Simulation Studies for the HESR | 3084 |
|
||
The High Energy Storage Ring (HESR) is part of the future Facility for Antiproton and Ion Research (FAIR) placed in Darmstadt (Germany). The HESR is designed for antiprotons with a momentum range from 1.5 GeV/c to 15 GeV/c, but will as well be suitable to provide heavy ion beams with a momentum range from approximately 0.6 GeV/c to 5.8 GeV/c. To guarantee smooth operation it is crucial to verify and to optimize the design with beam-dynamics simulations. Within recent studies* calculations based on a variant of the Lyapunov exponent were carried out to estimate the dynamic aperture. The studies could reproduce expected influences as reduced aperture due to tune resonances and tune shifts due to coupling. Thus they can be extended to investigate the dynamic behaviour of the beam and identify the main restrictions to the dynamic aperture near the chosen betatron tune. Furthermore ongoing measurements of the magnetic fields of the already produced bending dipoles and quadrupoles deliver a more precise insight to the harmonic content of these elements. Thus the existing simulations could now be updated by including the new measurement results.
*J. Hetzel, A. Lehrach, U. Bechstedt, J. Böker, B. Lorentz, R. Tölle: Towards Beam-Dynamics Simulations Including More Realistic Field Descriptions for the HESR, IPAC'16 |
||
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK067 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |