Author: Lamas Garcia, I.
Paper Title Page
MOPAB006 Design and Prototyping of New CERN Collimators in the Framework of the LHC Injector Upgrade (LIU) Project and the High-Luminosity (HL-LHC) Project 80
 
  • F.-X. Nuiry, O. Aberle, M. Bergeret, A. Bertarelli, N. Biancacci, R. Bruce, M. Calviani, F. Carra, A. Dallocchio, L. Gentini, S.S. Gilardoni, R. Illan Fiastre, I. Lamas Garcia, A. Masi, A. Perillo-Marcone, S. Pianese, S. Redaelli, E. Rigutto, B. Salvant
    CERN, Geneva, Switzerland
 
  In the framework of the Large Hadron Collider (LHC) Injectors Upgrade (LIU) and the High-Luminosity LHC (HL-LHC) Projects at CERN (European Organization for Nuclear Research, in Geneva, Switzerland), collimators in the Super Proton Synchrotron (SPS) to LHC transfer lines as well as ring collimators in the LHC will undergo important upgrades in the forthcoming years, mainly focused during the Long Shutdown 2 foreseen during 2019-2020. This contribution will detail the current design of the TCDIL collimators with a particular emphasis on the engineering developments performed on the collimator jaws, aiming at getting a stringent flatness while consid-ering also the integration of thermal shock resistant materials. The prototyping phase done at CERN will be also described. The activities ongoing to prepare the series production for other LHC collimator types (TCPPM, TCSPM, TCTPM, TCLD) will be presented, describing the role that each of these collimators play on the HL-LHC Project. A focus on the series production processes, the manufacturing and assembly technologies involved and the quality and performance assurance tests will be given.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB006  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB007 Status of Crystal Collimation Studies at the LHC 84
SUSPSIK008   use link to see paper's listing under its alternate paper code  
 
  • R. Rossi, O. Aberle, O.Ø. Andreassen, M.E.J. Butcher, C.A. Dionisio Barreto, I. Lamas Garcia, A. Masi, D. Mirarchi, S. Montesano, S. Redaelli, A. Rijllart, W. Scandale, P. Serrano Galvez, G. Valentino
    CERN, Geneva, Switzerland
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
 
  Crystal collimation is a technique that relies on highly pure bent crystals to coherently deflect beam particles - through the channeling mechanisms - onto dedicated absorbers. Standard multi-stage collimation systems for hadron beams use amorphous materials as primary collimators and might be limited by nuclear interactions and ion fragmentation that are strongly suppressed in crystals. A crystal collimation setup was installed in the betatron cleaning insertion of the Large Hadron Collider (LHC) to demonstrate with LHC beams the feasibility of this concept and to compare its performance with that of the present system. Channeling was observed for the first time with 6.5 TeV beam and and plans for further crystal collimation beam tests at the LHC are discussed. Results of these first beam tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA108 Operational Feedback and Analysis of Current and Future Designs of the Injection Protection Absorbers in the Large Hadron Collider at CERN 3517
 
  • D. Carbajo Perez, N. Biancacci, C. Bracco, G. Bregliozzi, M. Calviani, M.I. Frankl, L. Gentini, S.S. Gilardoni, G. Iadarola, I. Lamas Garcia, A. Lechner, A. Perillo-Marcone, B. Salvant
    CERN, Geneva, Switzerland
 
  Two injection protection absorbers, so-called TDIs (Target Dump Injection), are installed close to Interaction Points IP2 and IP8 of the Large Hadron Collider (LHC) right downstream of the injection kicker magnets (MKI). Malfunction or timing errors in the latter lead to wrong steering of the beam, which must then be intercepted by the TDI to avoid downstream equipment (which includes superconducting magnets) damage. In recent years, MKI failures during operation have brought to light opportunities for improvement of the TDI. The upgrade of this absorber, so-called TDIS (where S stands for segmented), is conceived as part of the High Luminosity-LHC (HL-LHC) project and those operational issues are taken into account for its design. The present document describes not only the aspects related to the current TDI performance and their impact in its successor's design but also the key modifications to cope with the stronger requirements associated to the higher luminosity goal.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA108  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)