Author: Kurian, F.
Paper Title Page
MOPAB037 Analytical and Numerical Performance Analysis of a Cryogenic Current Comparator 160
 
  • N. Marsic, H. De Gersem, W.F.O. Müller
    TEMF, TU Darmstadt, Darmstadt, Germany
  • F. Kurian, M. Schwickert, T. Sieber
    GSI, Darmstadt, Germany
 
  Funding: This research is funded by the German Bundesministerium für Bildung und Forschung as the project BMBF-05P15RDRBB Ultra-Sensitive Strahlstrommessung für zukünftige Beschleunigeranlagen.
Nowadays, cryogenic current comparators (CCCs) are among the most accurate devices for measuring extremely small electric currents. Probably the most interesting property of this equipment, is the excellent position independence of the current passing through it. This feature motivated the use of CCCs for beam instrumentation in particle accelerators. A typical CCC consists of a ferrite core, a pick-up coil, a superconducting quantum interference device, appropriate electronics and superconducting shielding consisting of a meander structure. This configuration offers a strong attenuation for all the magnetic field components, except for the azimuthal one. Thus, high precision measurements of extremely low beam currents are made possible. The damping performance of this device is analysed in this work. A 3D finite element (FE) analysis has been carried out and the computed results were compared to an analytical model*. Furthermore, in order to reduce the computation time, a 2.5D FE model is also proposed and discussed.
* K. Grohmann et al., Field attenuation as the underlying principle of
cryo-current comparators 2. Ring cavity elements, Cryogenics, vol. 16, no. 10, pp. 601-605, 1976.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB037  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)