Author: Krawczyk, P.
Paper Title Page
THPAB129 Contribution to the ESS LLRF System by Polish Electronic Group 4026
 
  • J. Szewiński, M. Gosk, Z. Gołębiewski, P. Krawczyk, I.M. Kudla
    NCBJ, Świerk/Otwock, Poland
  • A. Abramowicz, K. Czuba, M.G. Grzegrzolka, I. Rutkowski
    Warsaw University of Technology, Institute of Electronic Systems, Warsaw, Poland
  • W. Cichalewski, D.R. Makowski, A. Napieralski
    TUL-DMCS, Łódź, Poland
 
  Funding: Described work will be done as a part of polish in-kind contribution, granted by the Polish Ministry of Science and Higher Education in the decision number DIR/WK/2016/03.
Development of the LLRF system at ESS is coordinated by the Lund University, but part of it, LLRF systems for M-Beta and H-Beta sections, will be delivered within in-kind contribution from Poland. This document will describe the scope of work, work plan, and technical details of the selected components of the M-Beta and H-Beta LLRF systems sections. Described contribution will be made by the Polish Electronic Group (PEG), a consortium of three scientific units. LLRF system for ESS will be made of both, commercially available components and components designed specially for this project, and those last ones will be presented and described here. Except the technical details, the organizational aspects, such as schedule, project management or quality control, will be presented as well.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB129  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK094 Linac4 PIMS Construction and First Operation 4307
 
  • R. Wegner, G. Favre, P. Françon, J.-M. Geisser, F. Gerigk, J.-M. Giguet, J. Hansen, J.-B. Lallement, A.M. Lombardi, S. Papadopoulos, M. Polini, M. Redondas Monteserin, T. Tardy, N. Thaus, M. Vretenar
    CERN, Geneva, Switzerland
  • W. Behr, M. Pap
    Forschungszentrum Jülich GmbH, Central Institute of Engineering, Electronics and Analytics, Jülich, Germany
  • G. Brzezinski, P. Krawczyk, L. Kujawinski, M. Marczenko
    NCBJ, Świerk/Otwock, Poland
 
  Linac4, CERN's new H injector Linac uses PI-Mode Structures (PIMS) for the energy range between 103 and 160 MeV. 180 copper elements for 12 PIMS cavities have been fabricated in a collaboration between CERN, NCBJ and FZJ from 2011 to 2016. The cavities have been assembled, RF tuned and validated at CERN. This paper reports on the results as well as the experience with construction, installation, RF conditioning and first operation with beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)