Author: Kourkafas, G.
Paper Title Page
MOPVA005 Status of the Berlin Energy Recovery Linac Project BERLinPro 855
 
  • M. Abo-Bakr, W. Anders, K.B. Bürkmann-Gehrlein, A.B. Büchel, P. Echevarria, A. Frahm, H.-W. Glock, F. Glöckner, F. Göbel, B.D.S. Hall, S. Heling, H.-G. Hoberg, A. Jankowiak, C. Kalus, T. Kamps, G. Klemz, J. Knedel, J. Knobloch, J. Kolbe, G. Kourkafas, J. Kühn, B.C. Kuske, J. Kuszynski, D. Malyutin, A.N. Matveenko, M. McAteer, A. Meseck, C.J. Metzger-Kraus, R. Müller, A. Neumann, N. Ohm, K. Ott, E. Panofski, F. Pflocksch, J. Rahn, M. Schmeißer, O. Schüler, M. Schuster, J. Ullrich, A. Ushakov, J. Völker
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
The Helmholtz-Zentrum Berlin is constructing the Energy Recovery Linac Prototype BERLinPro, a demonstration facility for the science and technology of ERLs for future light source applications. BERLinPro is designed to accelerate a high current (100 mA, 50 MeV), high brilliance (norm. emittance below 1 mm mrad) cw electron beam. We report on the project status. This includes the completion of the building and the installation of the first accelerator components as well as the assembly of the SRF gun and GunLab beam diagnostics, which are now ready for commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA007 Simulations for Beam-Based Measurements in BERLinPro 859
 
  • M. McAteer, M. Abo-Bakr, J. Knedel, G. Kourkafas, B.C. Kuske, J. Völker
    HZB, Berlin, Germany
 
  BERLinPro is an energy recovery linac project whose goal is to establish the accelerator physics knowledge and technology needed to produce 50 MeV beams with high current, low normalized emittance, and low losses. Precise measurements of beam parameters are essential for demonstrating the achievement of performance goals. In this paper we present simulations for measurements of energy, energy spread, and bunch length using the tracking code Astra.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA010 Setup and Status of an SRF Photoinjector for Energy-Recovery Linac Applications 865
 
  • T. Kamps, D. Böhlick, A.B. Büchel, M. Bürger, P. Echevarria, A. Frahm, F. Göbel, S. Heling, A. Jankowiak, S. Keckert, H. Kirschner, G. Klemz, J. Knobloch, G. Kourkafas, J. Kühn, O. Kugeler, A.N. Matveenko, A. Neumann, N. Ohm-Krafft, E. Panofski, F. Pfloksch, S. Rotterdam, M.A.H. Schmeißer, M. Schuster, H. Stein, J. Ullrich, A. Ushakov, J. Völker
    HZB, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB.
The Superconducting RF (SRF) photoinjector programme for the energy-recovery linac (ERL) test facility BERLinPro sets out to push the brightness and average current limits for ERL electron sources by tackling the main challenges related to beam dynamics of SRF photoinjectors, the incorporation of high quantum efficiency (QE) photocathodes, and suppression of unwanted beam generation. The paper details the experimental layout of the SRF photoinjector and the gun test facility GunLab at Helmholtz-Zentrum Berlin.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA049 First Commissioning of an SRF Photo-Injector Module for BERLinPro 971
 
  • A. Neumann, A. Burrill, D. Böhlick, A.B. Büchel, M. Bürger, P. Echevarria, A. Frahm, H.-W. Glock, F. Göbel, S. Heling, K. Janke, T. Kamps, S. Keckert, S. Klauke, G. Klemz, J. Knobloch, G. Kourkafas, J. Kühn, O. Kugeler, N. Ohm, E. Panofski, H. Plötz, S. Rotterdam, M. Schenk, M.A.H. Schmeißer, M. Schuster, H. Stein, Y. Tamashevich, J. Ullrich, A. Ushakov, J. Völker
    HZB, Berlin, Germany
  • A. Matheisen, M. Schmökel
    DESY, Hamburg, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Helmholtz-Zentrum Berlin (HZB) is currently building an high average current superconducting ERL to demonstrate ERL operation with low normalized beam emittance of 1 mm·mrad at 100mA and short pulses of about 2 ps. For the injector section a series of SRF photoinjector cavities is being developed. The medium power prototype presented here features a 1.4 x λ/2 cell SRF cavity with a normal-conducting, high quantum efficiency CsK2Sb cathode, implementing a modified HZDR-style cathode insert. This injector potentially allows for 6 mA beam current at up to 3.5 MeV kinetic energy. In this contribution, the first RF commissioning results of the photo-injector module will be presented and compared to the level of performance during the cavity production and string assembly process.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK042 Solenoid Alignment for the SRF Photoinjector of BERLinPro at HZB 1778
 
  • G. Kourkafas, A. Jankowiak, T. Kamps, J. Li, J. Völker
    HZB, Berlin, Germany
  • M. Schebek
    Humboldt University Berlin, Berlin, Germany
 
  The Berlin Energy Recovery Linac Prototype (BERLinPro) at Helmholtz Zentrum Berlin (HZB) aims to deliver a continuous-wave (cw) electron beam of high average current (100 mA) and brilliance (normalized emittance below 1 mm mrad). The achievement of these demanding goals depends significantly on the performance of the electron source, a superconducting RF (SRF) photoinjector. A critical component for the quality of the generated beam is the superconducting solenoid magnet. In order to optimize its operation and minimize parasitic contributions, special attention has been given to the precise alignment of this element using a hexapod mover. Due to the strict limitations inside a cryostat, a complex coupling between the solenoid in vacuum and the hexapod in air has been realized, requiring sophisticated software and hardware mechanisms to prevent collisions. Along with this setup, the developed beam-based alignment procedure and its performance are demonstrated in this article.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK042  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB009 Multi-Objective Optimization of an SRF Photoinjector for ERL and UED Applications 3704
SUSPSIK065   use link to see paper's listing under its alternate paper code  
 
  • E. Panofski, A. Jankowiak, T. Kamps, G. Kourkafas
    HZB, Berlin, Germany
  • S. Eisebitt
    MBI, Berlin, Germany
 
  Superconducting RF photoinjectors, running in continuous-wave (cw) mode, are able to generate electron beams of high average brightness and ultra-short bunches. Therefore, they satisfy the requirements of future accelerator facilities, such as energy recovery linacs (ERL). Further, SRF guns are able to provide relativistic probe beams for ultrafast electron diffraction (UED). Choosing suitable values for the drive laser, cavity and solenoid settings poses a great challenge for the injector commissioning and operation. Using multi-objective optimization based on an evolutionary algorithm, optimum gun parameter settings are extracted from Pareto-optimum solutions. The development of a universal multi-objective optimization algorithm for SRF photoinjectors as well as first Pareto optimum results for an ERL and UED application of GunLab, the compact SRF gun test facility at Helmholtz-Zentrum Berlin, will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)