Author: Kondo, Y.
Paper Title Page
THPVA011 Beam Dynamics Studies on Low and Medium Energy Beam Transport With Intense H Ions for J-PARC Linac 4439
 
  • S. Artikova
    JAEA/J-PARC, Tokai-mura, Japan
  • K. Ikegami, T. Shibata
    KEK, Tokai, Ibaraki, Japan
  • Y. Kondo
    JAEA, Ibaraki-ken, Japan
 
  Japan Proton Accelerator Research Complex (J-PARC) linac was intensity-upgraded up to pulse current of 50 mA of H beam by replacing the ion source and the Radio Frequency Quadrupole(RFQ). We measured beam properties at the end of low energy beam transport (LEBT) line test stand under several conditions to investigate the transverse halo and space charge effects of an intense H ions. The LEBT is composed of two solenoid magnets. Furthermore, space charge neutralization effects in the residual gas were considered into account to describe the behavior of the beam phase space evolution. LEBT transmission efficiency, beam losses were estimated and optimization for beam matching into acceptance of the RFQ is studied. Two-solenoid based LEBT section is connected to the RFQ which is followed by a medium energy beam transport (MEBT) line. In this paper, we discuss the outcomes of beam emittance measurements and the results from beam dynamics simulations throughout LEBT and the RFQ acceleration.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA011  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA094 Beam Dynamics Design of the Muon Linac High-Beta Section 2304
 
  • Y. Kondo, K. Hasegawa
    JAEA/J-PARC, Tokai-mura, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • T. Mibe, M. Otani, M. Yoshida
    KEK, Ibaraki, Japan
 
  Funding: This work was supported by JSPS KAKENHI Grant Number 16H03987.
A muon linac development for a new muon g-2 experiment is now going on at J-PARC. Muons from the muon beam line (H-line) at the J-PARC MLF are once stopped in an silica aerojel target and room temperature muoniums are evaporated from the aerogel. They are dissociated with laser (ultra slow muons), then accelerated up to 212 MeV using a linear accelerator. For the accelerating structure from 40 MeV, disk-loaded traveling-wave structure is applicable because the particle beta is more than 0.7. The structure itself is similar to that for electron linacs, however, the cell length should be harmonic to the increase of the particle velocity. In this paper, the beam dynamics design of this muon linac using the disk-loaded structure is described.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA094  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA097 First Trial of the Muon Acceleration for J-Parc Muon g-2/edm Experiment 2311
 
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • S. Bae, B. Kim
    SNU, Seoul, Republic of Korea
  • Y. Fukao, N. Kawamura, T. Mibe, Y. Miyake, M. Otani, K. Shimomura
    KEK, Tsukuba, Japan
  • K. Hasegawa, Y. Kondo
    JAEA/J-PARC, Tokai-mura, Japan
  • H. Iinuma
    Ibaraki University, Hitachi, Ibaraki, Japan
  • K. Ishida
    RIKEN Nishina Center, Wako, Japan
  • G.P. Razuvaev
    BINP SB RAS, Novosibirsk, Russia
  • N. Saito
    J-PARC, KEK & JAEA, Ibaraki-ken, Japan
 
  Funding: This work was supported by JSPS KAKENHI Grant Number 16H03987 and 16J07784.
J-PARC E34 experiment aims to measure the muon g-2 and EDM precisely with the unique approach. The muon acceleration is the one of the most critical technique to achieve the goal of the sensitivity. The world's first muon LINAC is planed toward the muon acceleration to 212 MeV in J-PARC. The first trial of the muon acceleration is planed in the early 2017 with the J-PARC prototype RFQ ahead of the construction of the actual muon LINAC. The slow muon source is required for the RFQ test, since the input energy of the RFQ is 5.6 keV. The slow muon produced by the deceleration using the thin aluminum foil was observed. The demonstration of the muon extraction with 7 keV by the electrostatic accelerator called SOA lens was also done. The low-energy muon beam profile monitor (muon BPM) for the measurement of the beam intensity and profile in order to estimate the beam emittance was tested using the surface muon beam. The simulation for the beam emittance measurement has been developed. In this paper, the latest preparation status for the RFQ and the prospects for the muon acceleration test in J-PARC will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB125 Crossbar H-Mode Drift-Tube Linac Design With Alternative Phase Focusing for Muon Linac 2868
 
  • M. Otani, K. Futatsukawa
    KEK, Ibaraki, Japan
  • K. Hasegawa, Y. Kondo
    JAEA/J-PARC, Tokai-mura, Japan
  • R. Kitamura
    University of Tokyo, Tokyo, Japan
  • S.S. Kurennoy
    LANL, Los Alamos, New Mexico, USA
 
  Funding: This work was supported by JSPS KAKENHI Grant Number 15H03666.
A crossbar H-mode (CH) drift-tube linac (DTL) is one of alternatives for a low velocity part in a muon linac at the J-PARC E34 experiment. It will accelerate muons from v/c = 0.08 to 0.28 at an operational frequency of 324 MHz. In order to achieve higher acceleration efficiency and make cost lower, an alternative phase focusing (APF) scheme is adopted. In this poster, dynamics and cavity designs with computer calculations will be presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB125  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)