Author: Knobloch, J.
Paper Title Page
MOPVA005 Status of the Berlin Energy Recovery Linac Project BERLinPro 855
 
  • M. Abo-Bakr, W. Anders, K.B. Bürkmann-Gehrlein, A.B. Büchel, P. Echevarria, A. Frahm, H.-W. Glock, F. Glöckner, F. Göbel, B.D.S. Hall, S. Heling, H.-G. Hoberg, A. Jankowiak, C. Kalus, T. Kamps, G. Klemz, J. Knedel, J. Knobloch, J. Kolbe, G. Kourkafas, J. Kühn, B.C. Kuske, J. Kuszynski, D. Malyutin, A.N. Matveenko, M. McAteer, A. Meseck, C.J. Metzger-Kraus, R. Müller, A. Neumann, N. Ohm, K. Ott, E. Panofski, F. Pflocksch, J. Rahn, M. Schmeißer, O. Schüler, M. Schuster, J. Ullrich, A. Ushakov, J. Völker
    HZB, Berlin, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
The Helmholtz-Zentrum Berlin is constructing the Energy Recovery Linac Prototype BERLinPro, a demonstration facility for the science and technology of ERLs for future light source applications. BERLinPro is designed to accelerate a high current (100 mA, 50 MeV), high brilliance (norm. emittance below 1 mm mrad) cw electron beam. We report on the project status. This includes the completion of the building and the installation of the first accelerator components as well as the assembly of the SRF gun and GunLab beam diagnostics, which are now ready for commissioning.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA010 Setup and Status of an SRF Photoinjector for Energy-Recovery Linac Applications 865
 
  • T. Kamps, D. Böhlick, A.B. Büchel, M. Bürger, P. Echevarria, A. Frahm, F. Göbel, S. Heling, A. Jankowiak, S. Keckert, H. Kirschner, G. Klemz, J. Knobloch, G. Kourkafas, J. Kühn, O. Kugeler, A.N. Matveenko, A. Neumann, N. Ohm-Krafft, E. Panofski, F. Pfloksch, S. Rotterdam, M.A.H. Schmeißer, M. Schuster, H. Stein, J. Ullrich, A. Ushakov, J. Völker
    HZB, Berlin, Germany
  • I. Will
    MBI, Berlin, Germany
 
  Funding: The work is funded by the Helmholtz-Association, BMBF, the state of Berlin and HZB.
The Superconducting RF (SRF) photoinjector programme for the energy-recovery linac (ERL) test facility BERLinPro sets out to push the brightness and average current limits for ERL electron sources by tackling the main challenges related to beam dynamics of SRF photoinjectors, the incorporation of high quantum efficiency (QE) photocathodes, and suppression of unwanted beam generation. The paper details the experimental layout of the SRF photoinjector and the gun test facility GunLab at Helmholtz-Zentrum Berlin.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA010  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA046 120kW RF Power Input Couplers for BERLinPro 960
 
  • B.D.S. Hall, V. Dürr, F. Göbel, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
 
  The 50-MeV, 100-mA energy-recovery-linac (ERL) demonstration facility BERLinPro is currently undergoing construction at HZB. The high power injection system, that will deliver a beam at 6.5MeV, is split into a 1.4 cell SRF Photo injector and three Cornell-style 2-cell boosters. The injector and two of the booster cavities will provide about 2MeV each and must handle up to 220 kW of beam loading. New, cERL-based 115-kW high power couplers needed for the cavities' twin coupler system have begun manufacture. The design, optimization and manufacturing considerations of these couplers are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA047 Investigation of Trapped Magnetic Flux in Superconducting Niobium Samples with Polarized Neutron Radiography 964
 
  • O. Kugeler, J. Knobloch, M.M. Krzyzagorski, J.M. Köszegi, L. Riik, W. Treimer, R.F. Ziesche
    HZB, Berlin, Germany
 
  The dynamics of flux expulsion during superconducting transition and the influence of external AC magnetic fields on expulsion of trapped fields in Nb samples has been investigated with radiography using polarized neu-trons. Results of these experiments are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA048 Simulation of the Thermoelectrically Generated Magnetic Field in a SC Nine-Cell Cavity 968
 
  • J.M. Köszegi, J. Knobloch, O. Kugeler
    HZB, Berlin, Germany
 
  Several studies showed that thermocurrents generate a magnetic field in a horizontal cavity test assembly or cryomodul, which may get trapped during the supercon-ducting phase transition. The trapped flux causes additional dissipation in the order of 1 to 10 n' during operation and can therefore significantly degrade the quality factor in a TESLA cavity. We simulated the distribution of the generated magnetic field over the whole cavity-tank system for an asymmetric temperature distribution. The asymmetry allows the field to penetrate the RF surface which would be field free in the symmetric case. The calculated results complemented a direct measurement of trapped magnetic flux inside the cavity with a small number of field probes. Finally, the obtained data was combined with RF measurements in three passband modes to determine the overall distribution of trapped magnetic flux due to thermocurrents.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA049 First Commissioning of an SRF Photo-Injector Module for BERLinPro 971
 
  • A. Neumann, A. Burrill, D. Böhlick, A.B. Büchel, M. Bürger, P. Echevarria, A. Frahm, H.-W. Glock, F. Göbel, S. Heling, K. Janke, T. Kamps, S. Keckert, S. Klauke, G. Klemz, J. Knobloch, G. Kourkafas, J. Kühn, O. Kugeler, N. Ohm, E. Panofski, H. Plötz, S. Rotterdam, M. Schenk, M.A.H. Schmeißer, M. Schuster, H. Stein, Y. Tamashevich, J. Ullrich, A. Ushakov, J. Völker
    HZB, Berlin, Germany
  • A. Matheisen, M. Schmökel
    DESY, Hamburg, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of Helmholtz Association.
Helmholtz-Zentrum Berlin (HZB) is currently building an high average current superconducting ERL to demonstrate ERL operation with low normalized beam emittance of 1 mm·mrad at 100mA and short pulses of about 2 ps. For the injector section a series of SRF photoinjector cavities is being developed. The medium power prototype presented here features a 1.4 x λ/2 cell SRF cavity with a normal-conducting, high quantum efficiency CsK2Sb cathode, implementing a modified HZDR-style cathode insert. This injector potentially allows for 6 mA beam current at up to 3.5 MeV kinetic energy. In this contribution, the first RF commissioning results of the photo-injector module will be presented and compared to the level of performance during the cavity production and string assembly process.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA050 Setup of a Spatially Resolving Vector Magnetometry System for the Investigation of Flux Trapping in Superconducting Cavities 975
SUSPSIK099   use link to see paper's listing under its alternate paper code  
 
  • B. Schmitz, K.Alomari. Alomari, J. Knobloch, O. Kugeler, J.M. Köszegi, Y. Tamashevich
    HZB, Berlin, Germany
 
  Flux trapping is the major contribution to the residual resistance of superconducting cavities. In order to gain a better understanding of the mechanisms involved and aiming at an eventual minimization of trapped flux, a measurement setup based on AMR sensors was devised that allows for monitoring the magnetic field vector at various positions near the cavity surface. First results of the efforts are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA051 Design of the High Power 1.5 GHz Input Couplers for BESSY VSR 978
 
  • E. Sharples, M. Dirsat, J. Knobloch, A.V. Vélez
    HZB, Berlin, Germany
 
  The Variable pulse length Storage Ring (BESSY VSR) upgrade to BESSY II at Helmholtz-Zentrum Berlin (HZB) requires an upgrade on the RF systems in the form of high-voltage longitudinally focusing super conducting RF cavities of 1.5 GHz ad 1.75 GHz. For operation, coaxial RF power couplers capable of handling 13 kW peak power at standing wave operation are required for both the 1.5 GHz and 1.75 GHz cavities. The coupler is based on a design by Cornell University with modifications to suit frequency and coupling requirements. The coupler is intended to provide variable coupling with a range of Qext from 6x106 to 6x107 to allow flexibility to adjust to operating conditions of BESSY VSR. Here we present the RF design of the high-power coaxial coupler for BESSY VSR along with the design of the test stand for conditioning a pair of couplers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA051  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA052 Study on HOM Power Levels in the BESSY VSR Module 982
 
  • A.V. Tsakanian, H.-W. Glock, J. Knobloch, A.V. Vélez
    HZB, Berlin, Germany
 
  The BESSY VSR upgrade of the BESSY II light source represents a novel approach to simultaneously store of long (ca. 15ps) and short (ca. 1.5ps) bunches in the storage ring with the 'standard' user optics. This challenging goal requires installation of four new SRF cavities (2x1.5GHz and 2x1.75GHz) in a single module to minimize space requirements. These cavities are equipped with strong waveguide and beam tube HOM dampers necessary for stable operation. The expected HOM power and spectrum has been analyzed for the complete module. This study is performed for various BESSY VSR bunch filling patterns with 300 mA beam current. In the module different cavity arrangements are analyzed to reach the optimal operation conditions with equally distributed power portions in warm HOM loads and tolerable beam coupling impedance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA053 The SRF Module Developments for BESSY VSR 986
 
  • A.V. Vélez, H.-W. Glock, F. Glöckner, B.D.S. Hall, J. Knobloch, A. Neumann, P. Schnizer, E. Sharples, A.V. Tsakanian
    HZB, Berlin, Germany
 
  Helmholtz-Zentrum Berlin is developing BESSY VSR, a novel upgrade of the BESSY II facility to provide highly flexible pulse lengths while maintaining the flux and brilliance. The project goal is to simultaneously circulate both standard (some 10 ps long) and short (ps and sub-ps long) pulses offering the BESSY user community picosecond dynamics and high-resolution experiments. The concept relies on the installation of high-voltage SRF cavities operating at the 3rd and 3.5th harmonic whereby the beating of the two frequencies provides RF buckets for long and short bunches. Since these cavities will operate in CW and with high beam current (Ib=300 mA), the cavity design represents a challenging goal. In addition the need to avoid coupled bunch instabilities (CBI's), the installation of the VSR Cryomodule must fit in one of the available 4-m long low beta straights. To address the technological and engineering challenges techniques such as waveguide-damped cavities have been developed. First prototypes have been produced. In this paper, the present SRF developments are presented, including the cavities, high power couplers, higher-order mode absorbers and the cryomodule design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA053  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB027 Production, Tuning and Processing Challenges of the BERLinPro Gun1.1 Cavity 1375
 
  • H.-W. Glock, A. Frahm, J. Knobloch, A. Neumann
    HZB, Berlin, Germany
  • B. Rosin, D. Trompetter
    RI Research Instruments GmbH, Bergisch Gladbach, Germany
 
  Funding: Work supported by German Bundesministerium für Bildung und Forschung, Land Berlin, and grants of the Helmholtz Association
For the BERLinPro energy recovery LINAC, HZB is developing a superconducting 1.4-cell electron gun, which, in its final version, is planned to be capable of CW 1.3 GHz operation with 77 pC/bunch. For this purpose a series of three superconducting cavities, denoted as Gun 1.0, Gun 1.1 (both designed for 6 mA) and Gun 2.0 (100 mA) are foreseen. Gun 1.0 now reached operational status and the Gun 1.1 cavity is completely manufactured. In the paper the chronology of manufacturing, tuning and processing of the Gun 1.1-cavity is described, also giving details about combined mechanical/electrodynamic simulations, which were performed in order to gain deeper understanding of the cavity's unexpected tuning behavior.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB027  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK013 Renewal of Bessy Ii Rf System - Solid State Amplifiers and Hom Damped Cavities 4127
 
  • W. Anders, P. Goslawski, A. Heugel, H.-G. Hoberg, H. Hoffmann, A. Jankowiak, J. Knobloch, G. Mielczarek, M. Ries, M. Ruprecht, A. Schälicke, B. Schriefer, H. Stein
    HZB, Berlin, Germany
  • M. Haucke
    Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Berlin, Germany
  • K. Ludwig
    BESSY GmbH, Berlin, Germany
 
  Due to the fact that the klystrons run out of production and due to the aging of the old cavities, a renewal of the RF system was necessary. Solid state based transmitters and HOM damped nc single cell cavities have been installed at the BESSY II storage ring. The parameters of the components, the installation phase and the results to the beam will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK013  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)