Author: Klingbeil, H.
Paper Title Page
TUPIK048 Longitudinal Beam Stabilization at FAIR by Means of a Derivative Estimation 1795
 
  • B.R. Reichardt, D. Domont-Yankulova
    Technische Universität Darmstadt (TU Darmstadt, RMR), Darmstadt, Germany
  • D. Domont-Yankulova, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil, D.E.M. Lens
    GSI, Darmstadt, Germany
 
  Funding: Supported by the GSI
During acceleration in SIS18/SIS100 at GSI/FAIR longitudinal beam-oscillations are expected to occur. To reduce emittance blow-up, dedicated LLRF beam feedback systems are planned. To date longitudinal beam oscillations have been damped in machine experiments with a finite-impulse-response (FIR) filter controller with 3 filter taps[1]. An alternative approach implementing the FIR filter as a derivative estimator controller is simulated and tested. This approach shares the same controller topology and can therefore be easily integrated in the system. It exploits the fact that the sampling rate of the feedback hardware is considerably higher than the frequency of the beam oscillations. It is therefore capable of damping oscillations without overshoot within one oscillation period.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK048  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA030 FAIR SIS100 - Features and Status of Realisation 3320
 
  • P.J. Spiller, U. Blell, L.H.J. Bozyk, T. Eisel, E.S. Fischer, J. Henschel, P. Hülsmann, H. Klingbeil, H.G. König, H. Kollmus, P. Kowina, J.P. Meier, A. Mierau, C. Mühle, C. Omet, D. Ondreka, V.P. Plyusnin, I. Pongrac, N. Pyka, P. Rottländer, C. Roux, J. Stadlmann, B. Streicher, St. Wilfert
    GSI, Darmstadt, Germany
 
  SIS100 is a unique heavy ion synchrotron designed for the generation of high intensity heavy ion and Proton beams. New features and solutions are implemented to enable operation with low charge state heavy ions and to minimize ionization beam loss driven by collisions with the residual gas. SIS100 aims for new frontier and world wide leading Uranium bam intensities. A huge effort is taken to stabilized the dynamics of the residual gas pressure and to suppress ion induced desorption. Fast ramped superconducting magnets have been developed and are in production with highest precision in engineering and field quality, matching the requirements from beams with high space charge. A powerful equipment with Rf stations for fast acceleration, pre- and final compression, for the generation of barrier buckets and provision of longitudinal feed-back shall allow a flexible handling of the ion bunches for the matching to various user requirements. Results obtained with FOS (first of series) devices, status of realisation and technical challenges resulting from the demanding goals, will be presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA030  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA047 Input Signal Generation for Barrier Bucket RF Systems at GSI 3359
 
  • J. Harzheim, D. Domont-Yankulova, K. Groß, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Frey, H. Klingbeil
    GSI, Darmstadt, Germany
 
  At the GSI facility in Darmstadt, Germany, Barrier Bucket RF systems are currently designed for the SIS 100 synchrotron (part of the future FAIR facility) and the Experimental Storage Ring (ESR). The purpose of these systems is to provide single sine voltage pulses at the cavity gap. Due to the high requirements regarding the gap signal quality, the calculation of the pre-distorted input signal plays a major role in the system development. A procedure to generate the input signal based on the dynamic properties in the linear region of the system has been developed and tested at a prototype system. It was shown that this method is able to generate single sine gap signals of high quality in a wide voltage range. As linearity can only be assumed up to a certain magnitude, nonlinear effects limit the quality of the output signal at very high input levels. An approach to overcome this limit is to extend the input signal calculation to a nonlinear model of the system. In this contribution, the current method to calculate the required input signal is presented and experimental results at a prototype system are shown. Additionally, first results in the nonlinear region are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA047  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB097 Phase Calibration of Synchrotron RF Signals 3945
 
  • A. Andreev, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil, D.E.M. Lens
    GSI, Darmstadt, Germany
 
  In the scope of FAIR's scientific program higher beam intensities will be achieved and several new synchrotrons (including storage rings) are being built. The low-level RF (LLRF) systems of FAIR have to support multi-harmonic operations, barrier bucket generation and bunch compression in order to meet the desired beam quality requirements. All this imposes several requirements on the LLRF systems. For example the phase error of the gap voltage of a specific RF cavity must be less than 3 degrees. Thus, each individual component must have a better accuracy. The RF reference signals for the FAIR synchrotron RF cavity systems are generated by direct digital synthesis (DDS). Four so-called Group DDS modules are mounted in one crate. In the supply rooms, the reference signals of such a crate are then distributed to local cavity LLRF systems. Therefore, the precise phase calibration of Group DDS modules is of importance. A phase calibration method with respect to the absolute phases of DDS modules defined by means of the FAIR Bunch Phase Timing System (BuTiS) is developed, and its precision is under evaluation.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB097  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB098 Test Setup for Automated Barrier Bucket Signal Generation 3948
 
  • K. Groß, D. Domont-Yankulova, J. Harzheim, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • M. Frey, H. Klingbeil
    GSI, Darmstadt, Germany
 
  Funding: Work supported by the German Federal Ministry of Education and Research (BMBF) under the project 05P15RDRBA.
For sophisticated beam manipulation several ring accelerators at FAIR and GSI like the main synchrotron SIS100 and the ESR will be equipped with barrier bucket systems. Hence, the associated LLRF has to be applicable to different RF systems, with respect to the cavity layout and the power amplifier used, as well as to variable repetition rates and amplitudes. Since already the first barrier bucket pulse of a long sequence has to meet certain minimum demands, an open-loop control on the basis of calibration data is foreseen. Closed-loop control is required to improve the signal quality during a sequence of pulses and to adapt to changing conditions like temperature drifts. A test setup was realized that allows controlling the signal generator, reading out the oscilloscope as well as processing the collected data. Frequency and time domain methods can be implemented to approach the dynamics of the RF system successively and under operating conditions, i.e. generating single sine pulses. The setup and first results from measurements are presented as a step towards automated acquisition of calibration data and iterative improvement of the same.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB098  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB100 On the Impact of Empty Buckets on the Ferrite Cavity Control Loop Dynamics in High Intensity Hadron Synchrotrons 3954
 
  • D. Mihailescu Stoica, D. Domont-Yankulova
    Technische Universität Darmstadt (TU Darmstadt, RMR), Darmstadt, Germany
  • D. Domont-Yankulova, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • H. Klingbeil, D.E.M. Lens
    GSI, Darmstadt, Germany
 
  Funding: Supported by the Helmholtz Graduate School for Hadron and Ion Research
Due to technical reasons two of ten buckets have to stay empty in the planned SIS100 synchrotron at the GSI Helmholtzzentrum für Schwerionenforschung. The planned low level RF control systems consist of linear P and PI type controllers. These are responsible to maintain a desired phase and amplitude of the gap voltage. In addition the cavity is controlled to follow a prescribed resonance frequency ramp. In SIS100 the acceleration will be performed by ferrite cavities with comparatively small quality factors. Therefore, effects resulting from transient beam loading have to be expected. Influences due to empty buckets are analysed in the frequency domain and particle tracking simulations are carried out to estimate the effect on the overall system with particular consideration of emittance growth and particle loss.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB100  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK015 Prototype Results of the ESR Barrier-Bucket System 4133
 
  • M. Frey, P. Hülsmann, H. Klingbeil
    GSI, Darmstadt, Germany
  • D. Domont-Yankulova, K. Groß, J. Harzheim, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
 
  The experimental storage ring (ESR), operated at the GSI facility in Darmstadt, Germany, allows experiments with a variety of ion species. In combination with the existing electron cooler, its RF cavities have been used to demonstrate longitudinal beam accumulation in order to increase the beam intensity. Limitations of the existing narrow-band cavities led to the development of a magnetic alloy (MA) based broad-band cavity for the generation of Barrier-Bucket signals. The application of a pre-distortion method demands high linearity of the driver amplifier and highlights the importance of its selection process. In this contribution, the cavity and amplifier system design is described and data measured at a prototype system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK015  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK016 Status of the SIS100 RF Systems 4136
 
  • H. Klingbeil, R. Balß, M. Frey, P. Hülsmann, A. Klaus, H.G. König, U. Laier, D.E.M. Lens, K.-P. Ningel
    GSI, Darmstadt, Germany
 
  Four different types of RF cavities are realized for the heavy-ion synchrotron SIS100 which is built in the scope of the FAIR (Facility for Antiproton and Ion Research) project. The standard acceleration is performed by ferrite cavities. Barrier bucket cavities will allow a pre-compression of the beam by means of moving barriers. Bunch compressor cavities are used to realize a rotation in longitudinal phase space by 90 degrees, thereby reducing the bunch length. Finally, a longitudinal feedback system reduces undesired beam oscillations. In contrast to the ferrite-loaded accelerating cavities, the last-mentioned three cavity types are based on magnetic alloy (MA) material. Depending on the type of the cavity system, the realization is done by - or in close collaboration with - different industrial companies and institutions. In this contribution, the realization status of all these synchrotron RF systems is summarized.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA041 Progress in the Bunch-to-Bucket Transfer Implementation for FAIR 4525
 
  • T. Ferrand, H. Klingbeil
    TEMF, TU Darmstadt, Darmstadt, Germany
  • O. Bachmann
    TU Darmstadt, Darmstadt, Germany
  • J.N. Bai, H. Klingbeil
    GSI, Darmstadt, Germany
  • H. Damerau
    CERN, Geneva, Switzerland
 
  The transfer of bunched ion beams between various synchrotrons is required for the multi-accelerator complex FAIR, presently under construction at GSI. To avoid a dedicated distribution infrastructure for radiofrequency (RF) signals between each source and destination synchrotron, a new approach has been developed to transmit bunch and bucket phase information using synchronous Ethernet. This allows to locally regenerate all reference signals needed for the RF synchronization prior to a bunch-to-bucket transfer, as well as the triggers to the kickers. The modular and configurable hardware implementation based on the White Rabbit network progresses towards a proof-of-principle demonstrator. Besides the synchronization of revolution and RF frequencies, the bunches in the source accelerator must be aligned in azimuth with respect to the buckets in the receiving synchrotron. To validate the feasibility of this azimuthal steering, measurements have been performed with protons in the CERN PS to evaluate the longitudinal emittance growth. They are complemented with tracking simulations using the BLonD code.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA041  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)