Author: Kato, S.
Paper Title Page
MOPVA115 Status and Challenges of Vertical Electro-Polishing R&D at Cornell 1115
 
  • F. Furuta, M. Ge, T. Gruber, D.L. Hall, J.J. Kaufman, M. Liepe, R.D. Porter, J. Sears
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • V. Chouhan, Y.I. Ida, K.N. Nii, T.Y. Yamaguchi
    MGH, Hyogo-ken, Japan
  • T.D. Hall, M.E. Inman, R. Radhakrishnan, S.T. Snyder, E.J. Taylor
    Faraday Technology, Inc., Clayton, Ohio, USA
  • H. Hayano, S. Kato, T. Saeki
    KEK, Ibaraki, Japan
 
  Advanced Vertical Electro-Polishing (VEP) R&D for SRF Niobium cavities continues at Cornell's SRF group. One focus of this work is new EP cathode development in collaboration with KEK and Marui Galvanizing Co. Ltd (Marui) in Japan, and another focus is on HF free or acid free VEP protocols in collaboration with Faraday Technology Inc. The outcomes of these activities could be a significant cost reduction and an environmentally-friendlier VEP, which would be a breakthrough for future large scale EP applications on SRF cavities. Here we give a status update and report latest results from these R&D activities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA031 Beam Tests of Diamond-Like Carbon Coating for Mitigation of Electron Cloud 4497
 
  • J.S. Eldred, M. Backfish, C.-Y. Tan, R.M. Zwaska
    Fermilab, Batavia, Illinois, USA
  • S. Kato
    KEK, Ibaraki, Japan
 
  Electron cloud beam instabilities are an important consideration in virtually all high-energy particle accelerators and could pose a formidable challenge to forthcoming high-intensity accelerator upgrades. Our results evaluate the efficacy of a diamond-like carbon (DLC) coating for the mitigation of electron in the Fermilab Main Injector. The interior surface of the beampipe conditions in response to electron bombardment from the electron cloud and we track the change in electron cloud flux over time in the DLC coated beampipe and uncoated stainless steel beampipe. The electron flux is measured by retarding field analyzers placed in a field-free region of the Main Injector. We find the DLC coating reduces the electron cloud signal to roughly 2\% of that measured in the uncoated stainless steel beampipe.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)