Author: Johnstone, C.
Paper Title Page
THPVA133 HEATHER - HElium Ion Accelerator for RadioTHERapy 4768
 
  • J. Taylor, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
  • S. Green
    University Birmingham, Birmingham, United Kingdom
  • C. Johnstone
    Fermilab, Batavia, Illinois, USA
 
  A non-scaling fixed field alternating gradient (nsFFAG) accelerator is being designed for helium ion therapy. This facility will consist of 2 superconducting rings, treating with helium ions (He2+ ) and image with hydrogen ions (H + 2 ). Currently only carbon ions are used to treat cancer, yet there is an increasing interest in the use of lighter ions for therapy. Lighter ions have reduced dose tail beyond the tumour compared to carbon, caused by low Z secondary particles produced via inelastic nuclear reactions. An FFAG approach for helium therapy has never been previously considered. Having demonstrated isochronous acceleration from 0.5 MeV to 900 MeV, we now demonstrate the survival of a realistic beam across both stages.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA133  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA133 Thin Internal Target Studies in a Compact FFAG 2411
 
  • D. Bruton, R.J. Barlow, T.R. Edgecock
    University of Huddersfield, Huddersfield, United Kingdom
  • C. Johnstone
    PAC, Batavia, Illinois, USA
 
  The production of radioisotopes using a thin internal target and recycled beam within a compact FFAG design has been studied. Radioisotopes have a wide range of uses in medicine, and recent disruption to the supply chain has seen a renewed effort to find alternative isotopes and production methods. The FFAG design features separate sector magnets with non-scaling, non-linear field gradients which are optimized with magnet geometry to achieve isochronisity at the level of 0.3%, sufficient for Continuous Wave (CW) operation. Simulations have demonstrated that beam currents of up to 10mA can comfortably be achieved with this design. To further improve production efficiency a thin internal target, where the beam passes through the target and is recirculated, may be used. This setup ensures that production takes place within a narrow energy range, potentially increasing production rates and reducing impurities.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA133  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)