Author: Ji, D.
Paper Title Page
MOPIK079 The Off-Axis Injection Lattice Design of HEPS Storage Ring 716
 
  • Y.M. Peng, D. Ji, Y. Jiao, S.K. Tian, J.Q. Wang, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The dynamic aperture size determines the injection scheme to a large extent. The aim of storage ring design of HEPS is to achieve ultralow emittances on both transverse planes. This will bring very strong lattice nonlinearities. The present nominal design is a hybrid 7BA design with effective dynamic aperture of about 3 mm both in horizontal and vertical plane. Due to the restriction of dynamic aperture of this lattice, on-axis injection is the only choice . But, on-axis injection will bring a very big challenge for injector or injection kicker, if it is feasible to obtain a large dynamic aperture, off-axis injection is a favoured choice. In this paper, we will show the preliminary study of the lattice design with a sufficient dynamic aperture for pulsed multipole injection..  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK079  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK081 Study of HEPS Performance with Error Model and Simulated Correction 721
 
  • D. Ji, Z. Duan, S.K. Tian, Y. Wei
    IHEP, Beijing, People's Republic of China
 
  As an important component of physics study on High Energy Photon Source (HEPS), error modelling and simu-lated correction will provide the guideline to restrict the manufacture redundancy of the hardware and estimate the real machine performance. In this paper, we present some work on error effect evaluation and simulated commis-sioning based on a recent lattice design.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK081  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK082 First Turn Around Strategy for HEPS 724
 
  • Y.L. Zhao, Z. Duan, D. Ji, Y. Jiao, C. Li
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a 6-GeV, kilometer-scale, quasi-diffraction limited storage ring light source to be built in China[1]. Getting the first turn and approaching the closed orbit is very important in accelerator commissioning. In order to make first turn beam commissioning efficiently, we develop a MATLAB tool based on AT for automatic beam correction and closed orbit searching. The algorithm and simulation results are presented in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK082  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA026 Effects of Insertion Devices on Stored Electron Beam of High Energy Photon Source 911
 
  • X.Y. Li, Z. Duan, D. Ji, Y. Jiao, Y.F. Yang
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS) is a 4th generation, 6-Gev, ultralow-emittance, photon source project in China. High brightness hard X-ray beams at the energy particularly above 10kev are provided by insertion devices installed in straight sections of the storage ring. Brightness tuning curves of 14 ID beamlines planned in HEPS first stage are obtained after designing their parameters. However the presence of these insertion devices produce several effects on the beam performances including betatron tunes, betatron amplitude functions, closed orbit, emittance and dynamic aperture etc. It is found that the vertical octupole effect due to the fourteen IDs under the present schemes produce the most significant effect on the vertical dynamic aperture reduction. The ID field error effects on close orbit can be completely compensated by two correctors adjacent the ID at the both side. The horizontal emittance reduces to 36pm.rad due to the damping wiggler effect of IDs with field error after the orbit correction is also obtained.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA026  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB065 The Progress of HEPS Booster Design 1472
 
  • Y.M. Peng, Z. Duan, Y.Y. Guo, D. Ji, Y. Jiao, S.K. Tian, G. Xu
    IHEP, Beijing, People's Republic of China
 
  The High Energy Photon Source (HEPS), a kilometre-scale, ultralow-emittance storage ring light source, is to be built in Beijing, China. For HEPS, a full energy booster synchrotron operating at a frequency of 2Hz is considered. In this paper, we will report the progress of the lattice design and physics studies on HEPS booster, containing the injection consideration, ramping process, error studies, and so on.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB065  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB052 Progress of the Lattice Design and Physics Studies on the High Energy Photon Source 2697
 
  • Y. Jiao, X. Cui, Z. Duan, Y.Y. Guo, D. Ji, J.Y. Li, X.Y. Li, Y.M. Peng, Q. Qin, S.K. Tian, J.Q. Wang, N. Wang, Y. Wei, G. Xu, H.S. Xu, F. Yan, C.H. Yu, Y.L. Zhao
    IHEP, Beijing, People's Republic of China
 
  Funding: Work supported by NSFC (11475202, 11405187, 11205171)
The High Energy Photon Source (HEPS) is a 6-GeV, kilometer-scale, ultralow-emittance storage ring light source to be built in Beijing, China. In this paper we will discuss the progress of the lattice design and related physics studies on HEPS, covering issues of storage ring design, booster design, injection design, collective effects, error study, insertion device effects, longitudinal dynamics, etc.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB052  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)