Author: Huang, X.
Paper Title Page
TUPIK122 Bunch-by-Bunch Feedback Kickers for SPEAR3 2012
 
  • K. Tian, W.J. Corbett, J.D. Fox, S.M. Gierman, R.O. Hettel, X. Huang, A.K. Krasnykh, N. Kurita, D.J. Martin, J.A. Safranek, J.J. Sebek
    SLAC, Menlo Park, California, USA
  • Q. Lin
    DongHua University, Songjiang, People's Republic of China
  • D. Teytelman
    Dimtel, San Jose, USA
 
  SPEAR3 operates with a large cross-section copper vacuum chamber, mode-damped RF cavities and low-impedance insertion devices. As a result, the beam is passively stable for 280-bunch circulating beam current up to 500ma when the background gas pressure is low. In the future, more small-gap insertion devices will be installed and plans are underway to implement resonant bunch-crabbing for the ultrafast x-ray research program. These requirements drive the need for a fast, bunch-by-bunch feedback system to control beam instabilities, remove unwanted satellite bunches and resonantly crab select bunches on demand. In this paper we present a conceptual design for the transverse bunch-by-bunch stripline kickers.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB114 Potential Performance Limit of Storage Rings 2836
 
  • X. Huang
    SLAC, Menlo Park, California, USA
 
  The next generation of storage ring light sources will have significantly higher performance as multi-bend achromat cell structures are made practical with strong quadrupole and sextupole magnets. In principle the natural emittance can be made ever smaller with stronger magnets and larger rings until it reaches the true diffraction limit for hard X-rays. By considering the scaling laws of linear optics and nonlinear beam dynamics of storage rings and technical challenges, we explore the potential performance limit of future storage rings. A similar discussion may be applicable to the limit of energy frontier heavy-ion storage ring colliders.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB115 Normal Conducting CW Transverse Crab Cavity For Producing Short Pulses In SPEAR3 2840
 
  • Z. Li, V.A. Dolgashev, M. Dunham, K.J. Gaffney, R.O. Hettel, X. Huang, N. Kurita, J.A. Safranek, J.J. Sebek, K. Tian
    SLAC, Menlo Park, California, USA
 
  Funding: This work was supported by DOE Contract No. DE-AC02-76SF00515.
The ability to produce short pulse X-rays on the scale of 1-10 ps fwhm in the SPEAR3 storage ring light source would enable enhanced timing mode studies of dynamic processes in materials as they occur. The crab cavity approach appears to be optimal for SPEAR3 to produce short pulse X-rays. Furthermore, by using a two-frequency crabbing scheme, SPEAR3 would be able to produce short-pulse bunches while supplying the high average flux needed for regular users. While supercon-ducting RF (SCRF) technology could be a natural choice for the CW crab cavity, the deflecting voltage for SPEAR3 crabbing appears to be within reach of more affordable normal conducting RF (NCRF). In this paper, we present a preliminary NCRF CW crab cavity design for SPEAR3.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THXA1 Beam-Based Optimization of Storage Ring Nonlinear Beam Dynamics 3627
 
  • X. Huang, J.A. Safranek
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported in part by the U.S. Department of Energy under contract number DE-AC02-76SF00515.
This paper will present considerations and algorithms for direct online optimization of the nonlinear beam dynamics of existing and future storage rings. The experimental setup and results from using this approach to improve the dynamic aperture of the SPEAR3 storage ring, using the robust conjugate direction search method and the particle swarm optimization method, will be covered.
 
slides icon Slides THXA1 [1.589 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THXA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)