Author: Huang, N.Y.
Paper Title Page
TUPIK104 Effects of Non-axisymmetric Solenoid Field on Beam Quality in Velocity Bunching 1958
 
  • Y.H. Wen
    NTHU, Hsinchu, Taiwan
  • C.H. Chen, N.Y. Huang, W.K. Lau, A.P. Lee
    NSRRC, Hsinchu, Taiwan
 
  Space-charge effect is not negligible during the early stage of beam acceleration in a photoinjector rf linac that is operated for generation of short electron pulses by velocity bunching. A solenoid with iron shield can be used to provide the required axis-symmetric magnetic field to balance the radial space-charge force of the beam. However, the iron shield cannot be perfectly symmetric because openings are reserved for feeding water pipes and electrical cables to the coils. In addition, alignment errors of the solenoid may also spoil the symmetry of the focusing field. In this study, simulation is carried out to investigate how does the non-axisymmetric solenoid field of different origins influence beam properties, such as beam size, transverse emittance during the rf bunch compression.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK104  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB149 Characterization of the THz Radiation-Based Bunch Length Measurement System for the NSRRC Photoinjector 4080
 
  • C.C. Liang, B.Y. Chen, C.H. Chen, M.C. Chou, S. Fann, C.S. Huang, N.Y. Huang, J.-Y. Hwang, W.K. Lau, A.P. Lee, T.Y. Lee, W.Y. Lin, T.-C. Yu
    NSRRC, Hsinchu, Taiwan
 
  A part of high brightness photo-injection (HBI) project at NSRRC is intending to adopt Coherent Transition Radiation (CTR) and Coherent Undulator Radiation (CUR) to generate THz radiation with an ultrashort electron bunch. Such high intensity THz sources allow the THz spectrum to be conducted easily with a THz interferometer and a Golay cell detector. Furthermore, the radiation spectrum carries information of the electron distribution which allows ultrashort electron bunch length measurements. For verifying correct measuring procedure during the CTR and CUR experiments, a conventional THz radiation generated by optical rectification from a ZnTe crystal has been performed. The produced THz pulse was sent into a Michelson interferometer which is designed for the autocorrelation of the intense, sub-mm and mm-wavelength, spatially-coherent radiation pulses. The THz spectrum can be further obtained from the interferogram by the Fourier transform process. In such way, the THz spectrum can be investigated if the result is satisfactory and can be applied on the THz CTR and CUR experiments for the next step.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)