Author: Harper, C.E.
Paper Title Page
MOPAB154 Measurement of Proton Transverse Emittance in the Brookhaven AGS 494
 
  • H. Huang, L. Ahrens, C.W. Dawson, C.E. Harper, C. Liu, F. Méot, M.G. Minty, V. Schoefer, S. Tepikian, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
High luminosity and high polarization in RHIC require good control and measurement of emittance in its injector, the Brookhaven AGS. In the past, the AGS emittance has been measured by using an ion collecting IPM during the whole cycle. The beam profiles from this IPM are distorted by space charge forces at higher energy, which makes the emittance determination very hard. The effect has been measured with IPM measurement at different energies with RF off to mitigate the space charge effect. In addition, helical snake magnets and near integer vertical tune for polarized proton operation distort the lattice in the AGS and introduce large beta beating. For more precise measurements of the emittance, we need turn-by-turn (TBT) measurements near injection and beta function measurements at the IPM. The AGS has also been modeled to get the beta functions at the locations of IPM. A new type of electron collecting IPM has been installed and tested in the AGS with proton beam. The vertical beta functions at the IPM locations have been measured with a local corrector near the IPM. This paper summarizes our current understanding of AGS emittances and plans for the further improvements.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB154  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA050 RHIC Polarized Proton Operation for 2017 2188
 
  • V.H. Ranjbar, P. Adams, Z. Altinbas, E.C. Aschenauer, G. Atoian, E.N. Beebe, S. Binello, I. Blackler, M. Blaskiewicz, J.M. Brennan, K.A. Brown, D. Bruno, M.R. Costanzo, T. D'Ottavio, K.A. Drees, P.S. Dyer, A.V. Fedotov, W. Fischer, C.J. Gardner, D.M. Gassner, X. Gu, C.E. Harper, M. Harvey, T. Hayes, J. Hock, H. Huang, R.L. Hulsart, J.P. Jamilkowski, T. Kanesue, N.A. Kling, J.S. Laster, C. Liu, Y. Luo, D. Maffei, M. Mapes, G.J. Marr, A. Marusic, F. Méot, K. Mernick, R.J. Michnoff, T.A. Miller, M.G. Minty, C. Montag, J. Morris, G. Narayan, C. Naylor, S. Nemesure, P. Oddo, M. Okamura, S. Perez, A.I. Pikin, A. Poblaguev, S. Polizzo, V. Ptitsyn, D. Raparia, G. Robert-Demolaize, T. Roser, J. Sandberg, W.B. Schmidke, V. Schoefer, F. Severino, T.C. Shrey, K.S. Smith, Z. Sorrell, D. Steski, S. Tepikian, R. Than, P. Thieberger, J.E. Tuozzolo, G. Wang, K. Yip, A. Zaltsman, A. Zelenski, K. Zeno, W. Zhang, B. van Kuik
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by the US Department of Energy under contract number DE-SC0012704
The 2017 operation of the Relativistic Heavy Ion Collider (RHIC) involved the running of only a single experiment at STAR with PHENIX offline in the process of the upgrade to sPHENIX. For this run there were several notable changes to machine operations. These included, transverse polarization, luminosity leveling, a new approach to machine protection and the development of new store and ramped lattices. The new 255 GeV store lattice was designed to both accommodate the necessary phase advance between the e-lens and IP8 for testing and to maximize dynamic aperture. The new lattices on the ramp were designed to maximize polarization transmission during the three strong intrinsic spin resonances crossings. Finally we are also commissioning new 9 MHz RF cavities during this run.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA050  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA149 AGS Polarized Proton Operation Experience in RHIC Run17 2452
 
  • H. Huang, P. Adams, J. Beebe-Wang, M. Blaskiewicz, K.A. Brown, C.J. Gardner, C.E. Harper, C. Liu, F. Méot, J. Morris, A. Poblaguev, V.H. Ranjbar, D. Raparia, T. Roser, V. Schoefer, S. Tepikian, N. Tsoupas, K. Yip, A. Zelenski, K. Zeno
    BNL, Upton, Long Island, New York, USA
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
Imperfection and vertical intrinsic depolarizing resonances have been overcome by the two partial Siberian snakes in the Alternating Gradient Synchrotron (AGS). The relatively weak but numerous horizontal resonances are overcome by a pair of horizontal tune jump quads. 70% proton polarization has been achieved for 2·1011 intensity. Further gain can come from maintaining smaller transverse emittance with same beam intensity. The main efforts now are to reduce the transverse emittance in the AGS and Booster, as well as robust jump quads timing generation scheme. This paper summarizes the operation results in the injectors.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA149  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)