Author: Hao, H.
Paper Title Page
MOPVA031 Low Energy Compact Storage Ring Design for Compton Gamma-Ray Light Source 921
 
  • Z. Pan, J.M. Byrd, C. Sun
    LBNL, Berkeley, California, USA
  • H. Hao, Y.K. Wu
    FEL/Duke University, Durham, North Carolina, USA
  • W.-H. Huang, C.-X. Tang
    TUB, Beijing, People's Republic of China
 
  Gamma-ray sources with high flux and spectral densities are highly demanded by many nuclear experiments. We design a low energy compact storage ring to produce gamma-ray with energy in the range of 4-20 MeV based on Compton backscattering technique. The storage ring energy is 500-800 MeV with the circumference of about 59 m and natural emittance of about 3 nmrad at 500 MeV. In this paper, we present the storage ring lattice design and propose two collision configurations for Compton gamma-ray generation. Intrabeam scattering has been investigated which can increase emittance from 3 nmrad to 6 nmrad horizontally for 500 MeV ring. We also discuss how Compton scattering affects longitudinal and transverse beam dynamics by tracking macro particles using our parallel simulation code. Based on this study, we can further optimize our storage ring lattice design for the higher gamma-ray flux production.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA031  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)