Author: Guardia, J.
Paper Title Page
MOPAB005 The MultiMat Experiment at CERN HiRadMat Facility: Advanced Testing of Novel Materials and Instrumentation for HL-LHC Collimators 76
 
  • F. Carra, A. Bertarelli, E. Berthomé, C. Fichera, J. Guardia, M. Guinchard, L.K. Mettler, S. Redaelli, O. Sacristan De Frutos
    CERN, Geneva, Switzerland
  • T.R. Furness
    University of Huddersfield, Huddersfield, United Kingdom
  • M. Portelli
    UoM, Msida, Malta
 
  Funding: *Part of the work described in this thesis was developed in the scope of the EuCARD-2 Project, WP11 'ColMat ' HDED', co-funded by the partners and the European Commission under Capacities 7th Framework Programme, Grant Agreement n. 312453. Research supported by the HL-LHC project.
The increase of the stored beam energy in future particle accelerators, such as the HL-LHC and the FCC, calls for a radical upgrade in the design, materials and instrumentation of Beam Intercepting Devices (BID), such as collimators Following successful tests in 2015 that validated new composite materials and a novel jaw design conceived for the HL-LHC collimators, a new HiRadMat experiment, named 'HRMT36-MultiMat', is scheduled for autumn 2017. Its objective is to determine the behaviour under high intensity proton beams of a broad range of materials relevant for collimators and beam intercepting devices, thin-film coatings and advanced equipment. The test bench features 16 separate target stations, each hosting various specimens, allowing the exploration of complex phenomena such as dynamic strength, internal damping, nonlinearities due to anisotropic inelasticity and inhomogeneity, effects of energy deposition and radiation on coatings. This paper details the main technical solutions and engineering calculations for the design of the test bench and of the specimens, the candidate target materials and the instrumentation system
#federico.carra@cern.ch
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB005  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA113 Thermo-Physical and Mechanical Characterisation of Novel Materials under Development for HL-LHC Beam Intercepting Devices 3536
 
  • O. Sacristan De Frutos, A. Bertarelli, L. Bianchi, F. Carra, J. Guardia, M. Guinchard, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: The research leading to these results has received funding from the European Commission under the FP7 Research Infrastructures project EuCARD-2, grant agreement no.312453
The collimation system for high energy particle accelerators as HL-LHC, must be designed to withstand the close interaction with intense and energetic particle beams, safely operating over an extended range of temperatures in extreme conditions (pressure, strain-rate, radiation), which are to become more demanding with the High Luminosity LHC. In order to withstand such conditions, the candidate materials must possess among other properties outstanding thermal shock resistance and high thermal and electrical conductivity, condition only met by advanced or novel materials. Therefore, an extensive R&D program has been launched to develop novel materials capable of replacing or complementing materials used for present collimators. So far, Molybdenum Carbide - Graphite and Copper-Diamond composites have been identified as the most promising materials. Literature data are scarce or non-existing for these materials. For this reason the successive characterisation campaigns constitute a linchpin of the R&D program. This paper reviews the experimental program followed for the thermo-physical and mechanical characterisation of the materials, and discusses the most relevant results.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA113  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)