Author: Grenard, J.L.
Paper Title Page
TUPVA126 The SPS Beam Dump Facility 2389
 
  • M. Lamont, G. Arduini, M. Battistin, M. Brugger, M. Calviani, F. B. Dos Santos Pedrosa, M.A. Fraser, L. Gatignon, S.S. Gilardoni, B. Goddard, J.L. Grenard, C. Heßler, R. Jacobsson, V. Kain, K. Kershaw, E. Lopez Sola, J.A. Osborne, A. Perillo-Marcone, H. Vincke
    CERN, Geneva, Switzerland
 
  The proposed SPS beam dump facility (BDF) is a fixed-target facility foreseen to be situated at the North Area of the SPS. Beam dump in this context implies a target aimed at absorbing the majority of incident protons and containing most of the cascade generated by the primary beam interaction. The aim is a general purpose fixed target facility, which in the initial phase is aimed at the Search for Hidden Particles (SHiP) experiment. Feasibility studies are ongoing at CERN to address the key challenges of the facility. These challenges include: slow resonant extraction from the SPS; a target that has the two-fold objective of producing charged mesons as well as stopping the primary proton beam; and radiation protection considerations related to primary proton beam with a power of around 355 kW. The aim of the project is to complete the key technical feasibility studies in time for the European Strategy for Particle Physics (ESPP) update foreseen in 2020. This is in conjunction with the recommendation by the CERN Research Board to the SHiP experiment to prepare a comprehensive design study as input to the ESPP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA110 Analysis and Operational Feedback on the New Design of the High Energy Beam Dump in the CERN SPS 3524
 
  • P. Rios Rodriguez, J.A. Briz Monago, M. Calviani, K. Cornelis, S. De Man, R. Esposito, S.S. Gilardoni, B. Goddard, J.L. Grenard, D. Grenier, M. Grieco, J. Humbert, V. Kain, F.M. Leaux, C. Pasquino, A. Perillo-Marcone, J.R.F. Poujol, S. Sgobba, D. Steyart, F.M. Velotti, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  CERN's Super Proton Synchrotron (SPS) high-energy internal dump (Target Internal Dump Vertical Graphite, known as TIDVG) is required to intercept beams from 102 to 450 GeV. The equipment installed in 2014 (TIDVG#3) featured an absorbing core composed of different materials surrounded by a water-cooled copper jacket, which hold the UHV of the machine. An inspection of a previous equipment (TIDVG#2) in 2013 revealed significant beam induced damage to the aluminium section of the dump, which required imposing operational limitations to minimise the risk of reproducing this phenomenon. Additionally, in 2016 a vacuum leak was detected in the dump assembly, which imposed further limitations, i.e. a reduction of the beam intensity that could be dumped per SPS supercycle. This paper presents a new design (TIDVG#4), which focuses on improving the operational robustness of the device. Moreover, thanks to the added instrumentation, a careful analysis of its performance (both experimentally and during operation) will be possible. These studies will help validating technical solutions for the design of the future SPS dump to be installed during CERN's Long Shutdown 2 in 2020 (TIDVG#5).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)