Author: Geithner, W.
Paper Title Page
THPAB096 Automatized Optimization of Beam Lines Using Evolutionary Algorithms 3941
 
  • S. Appel, V. Chetvertkova, W. Geithner, F. Herfurth, U. Krause, S. Reimann, M. Sapinski, P. Schütt
    GSI, Darmstadt, Germany
  • D. Österle
    KIT, Karlsruhe, Germany
 
  Due to the massive parallel operation modes at GSI accelerators, a lot of accelerator setup and re-adjustment has to be made by operators during a beam time. This is typically done manually using potentiometers and is very time-consuming. With the FAIR project the complexity of the accelerator facility increases further and for efficiency reasons it is recommended to establish a high level of automation for future operation. Modern Accelerator Control Systems allow a fast access to both, accelerator settings and beam diagnostics data. This provides the opportunity to implement algorithms for automated adjustment of e.g. magnet settings to maximize transmission and optimize required beam parameters. The fast-switching magnets in GSI-beamlines are an optimal basis for an automatic exploration of the parameter-space. The optimization of the parameters for the SIS18 multi-turn-injection using a genetic algorithm has already been simulated*. The first results of our automatized online parameter optimization at the CRYRING@ESR injector are presented here.
[*] S. Appel, O. Boine-Frankenheim: Optimization of Multi-turn Injection into a Heavy-Ion Synchrotron using Genetic Algorithms, Proceedings of IPAC2015, Richmond, USA (2015)
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB096  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)