Author: Gatignon, L.
Paper Title Page
MOPIK045 SPS Slow Extraction Losses and Activation: Challenges and Possibilities for Improvement 611
 
  • M.A. Fraser, B. Balhan, H. Bartosik, C. Bertone, D. Björkman, J.C.C.M. Borburgh, N. Conan, K. Cornelis, R. Garcia Alia, L. Gatignon, B. Goddard, Y. Kadi, V. Kain, A. Mereghetti, F. Roncarolo, P.M. Schicho, J. Spanggaard, O. Stein, L.S. Stoel, F.M. Velotti, H. Vincke
    CERN, Geneva, Switzerland
 
  In 2015 the highest integrated number of protons in the history of the North Area was slow extracted from the CERN Super Proton Synchrotron (SPS) for the Fixed Target physics programme. At well over 1.1019 protons on target (POT), this represented the highest annual figure at SPS for almost two decades, since the West Area Neutrino Facility was operational some 20 years ago. The high intensity POT requests have continued into 2016-17 and look set to do so for the foreseeable future, especially in view of the proposed SPS Beam Dump Facility and experiments, e.g. SHiP*, which are requesting up to 4·1019 POT per year. Without significant improvements, the attainable annual POT will be limited to well below the total the SPS machine could deliver, due to activation of accelerator equipment and associated personnel dose limitations. In this contribution, the issues arising from the recent high activation levels are discussed along with the steps taken to understand, manage and mitigate these issues. The research avenues being actively pursued to improve the slow extraction related beam loss for present operation and future requests are outlined, and their relative merits discussed.
*A. Golutvin et al., ‘‘A Facility to Search for Hidden Particles (SHiP) at the CERN SPS'', CERN, Geneva, Switzerland, Rep. CERN-SPSC-2015-016 (SPSC-P-350), Apr. 2015.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK045  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPIK049 SPS Slow Extracted Spill Quality During the 2016 Run 627
 
  • V. Kain, J. Bauche, P. Catherine, K. Cornelis, M.A. Fraser, L. Gatignon, C.M. Genton, B. Goddard, K. Kahle, M. Magrans de Abril, O. Michels, L.S. Stoel, F.M. Velotti
    CERN, Geneva, Switzerland
 
  The flux of particles slow extracted with the 1/3 integer resonance from the Super Proton Synchrotron at CERN should ideally be constant over the length of the extraction plateau, for optimum use of the beam by the fixed target experiments. The extracted intensity is controlled in feed-forward correction of the horizontal tune via the main SPS quadrupoles. The Mains power supply noise at 50 Hz and harmonics is also corrected in feed-forward by small amplitude tune modulation at the respective frequencies with a dedicated additional quadrupole circuit. In 2016 the spill quality could be much improved with respect to the situation of the previous year with more performant algorithms. In this paper the improved tools are described and the characteristics of the SPS slow extracted spill in terms of macro structure and typical frequency content are shown. Other sources of perturbation were, however, also present in 2016 which frequently caused the spill quality to be much reduced. The different effects are discussed and possible or actual solutions detailed. Finally, the evolution of the spill quality during characteristic periods in the 2016 run is presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK049  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA124 The Beam Lines Design for the CERN Neutrino Platform in the CERN North Area and an Outlook on Their Expected Performance 2382
 
  • N.C. Charitonidis, M. Brugger, I. Efthymiopoulos, L. Gatignon, E.M. Nowak, I. Ortega Ruiz
    CERN, Geneva, Switzerland
  • Y. Karyotakis
    IN2P3-LAPP, Annecy-le-Vieux, France
  • P.R. Sala
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
 
  In the framework of the CERN Neutrino Platform project, extensions to the existing SPS North Area H2 and H4 secondary beam lines, able to provide low-energy charged particles in the momentum range of 0.4 to 12 GeV, have been designed. The parameters of these very low energy beam lines, the expected beam composition as seen by the experiments as well as an outlook on their expected performance are summarized in this paper. Results from Monte-Carlo simulations, important for the optimization of the future instrumentation of the beam lines (serving both the purpose of beam tuning and the experiments' needs for particle identification and momentum measurements), are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPVA126 The SPS Beam Dump Facility 2389
 
  • M. Lamont, G. Arduini, M. Battistin, M. Brugger, M. Calviani, F. B. Dos Santos Pedrosa, M.A. Fraser, L. Gatignon, S.S. Gilardoni, B. Goddard, J.L. Grenard, C. Heßler, R. Jacobsson, V. Kain, K. Kershaw, E. Lopez Sola, J.A. Osborne, A. Perillo-Marcone, H. Vincke
    CERN, Geneva, Switzerland
 
  The proposed SPS beam dump facility (BDF) is a fixed-target facility foreseen to be situated at the North Area of the SPS. Beam dump in this context implies a target aimed at absorbing the majority of incident protons and containing most of the cascade generated by the primary beam interaction. The aim is a general purpose fixed target facility, which in the initial phase is aimed at the Search for Hidden Particles (SHiP) experiment. Feasibility studies are ongoing at CERN to address the key challenges of the facility. These challenges include: slow resonant extraction from the SPS; a target that has the two-fold objective of producing charged mesons as well as stopping the primary proton beam; and radiation protection considerations related to primary proton beam with a power of around 355 kW. The aim of the project is to complete the key technical feasibility studies in time for the European Strategy for Particle Physics (ESPP) update foreseen in 2020. This is in conjunction with the recommendation by the CERN Research Board to the SHiP experiment to prepare a comprehensive design study as input to the ESPP.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPVA126  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)