Author: Fukuda, M.K.
Paper Title Page
MOPIK009 Characterization of Cold Model Cavity for Cryocooled C-Band 2.6-Cell Photocathode RF Gun at 20 K 518
 
  • T. Tanaka, K. Hayakawa, Y. Hayakawa, K. Nakao, K. Nogami, T. Sakai, K. Takatsuka
    LEBRA, Funabashi, Japan
  • M.K. Fukuda, D. Satoh, T. Takatomi, N. Terunuma, J. Urakawa, M. Yoshida
    KEK, Ibaraki, Japan
 
  Funding: This work was partly supported by the Photon and Quantum Basic Research Coordinated Development Program of the Japanese Ministry of Education, Culture, Sports, Science, and Technology (MEXT).
A cryocooled C-band 2.6-cell photocathode RF electron gun has been studied at Nihon University in cooperation with KEK. The cold model cavity with an input coupler was completed in spring 2016. The RF characteristics measured at room temperature were in agreement with the prediction by the CST Studio simulation. The RF characteristics at 20 K have been measured using a rather simple cavity-cooling vacuum system that was built by using existing components for tentative experiments. A thin-wall stainless-steel R48 waveguide with copper-plated inner walls has been used for the RF power transmission from the room-temperature input port to the 20-K cooled coupler waveguide. The unloaded Q-value of 73000 has been obtained by the reflection coefficient measurement at 20 K, which is in agreement with the result of the CST Studio simulation using the cavity surface resistance predicted by the theory of the anomalous skin effect.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK009  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)