Author: Fiascaris, M.
Paper Title Page
MOPAB001 Status of the FCC-hh Collimation System 64
 
  • J. Molson, A. Faus-Golfe
    LAL, Orsay, France
  • R. Bruce, M. Fiascaris, A.M. Krainer, S. Redaelli
    CERN, Geneva, Switzerland
 
  Funding: Funding from the European Union's Horizon 2020 research and innovation programme under grant No 654305.
The future circular hadron collider (FCC-hh) will have an unprecedented proton beam energy of 50 TeV, and total stored beam energy of 8.4 GJ. We discuss current developments in the collimation system design, and methods with which the challenges faced due to the high energies involved can be mitigated. Finally simulation results of new collimation system designs are presented.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB001  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB003 Energy Deposition in the Betatron Collimation Insertion of the 100 TeV Future Circular Collider 68
 
  • M.I. Besana, C. Bahamonde Castro, A. Bertarelli, R. Bruce, F. Carra, F. Cerutti, A. Ferrari, M. Fiascaris, A. Lechner, A. Mereghetti, S. Redaelli, E. Skordis, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  The FCC proton beam is designed to carry a total energy of about 8500 MJ, a factor of 20 above the LHC. In this context, the collimation system has to deal with extremely tight requirements to prevent quenches and material damage. A first layout of the betatron cleaning insertion was conceived, adapting the present LHC collimation system to the FCC lattice. A crucial ingredient to assess its performance, in particular to estimate the robustness of the protection devices and the load on the downstream elements, is represented by the simulation of the particle shower generated at the collimators, allowing detailed energy deposition estimations. This paper presents the first results of the simulation chain starting from the proton losses generated with the Sixtrack-FLUKA coupling, as currently done for the present LHC and for its upgrade. Expectations in terms of total power, peak power density and integrated dose on the different accelerator components are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB046 SixTrack for Cleaning Studies: 2017 Updates 3811
 
  • A. Mereghetti, R. Bruce, F. Cerutti, R. De Maria, A. Ferrari, M. Fiascaris, P.D. Hermes, D. Mirarchi, P.G. Ortega, D. Pastor Sinuela, E. Quaranta, S. Redaelli, K.N. Sjobak, V. Vlachoudis
    CERN, Geneva, Switzerland
  • J. Molson
    LAL, Orsay, France
  • Y. Zou
    IHEP, Beijing, People's Republic of China
 
  SixTrack is a single particle tracking code for simulating beam dynamics in ultra-relativistic accelerators. It is widely used at the European Organisation for Nuclear Research (CERN) for predicting dynamic aperture and cleaning inefficiency in large circular machines like the Super Proton Synchrotron (SPS), the Large Hadron Collider (LHC) and the Future Circular Collider (FCC). The code is under continuous development, to both extend its physics models, and enhance performance. The present work gives an overview of developments, specifically aimed at extending the code capabilities for cleaning studies. They mainly involve: the online aperture check; the possibility to perform simulations coupled to advanced Monte Carlo codes like Fluka or using the scattering event generator of the Merlin code; the generalisation of tracking maps to ion species; the implementation of composite materials of relevance for the future upgrades of the LHC collimators; the physics of interactions with bent crystals. Plans to merge these functionalities into a single version of the SixTrack code will be outlined.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB046  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)