Author: Eremeev, G.V.
Paper Title Page
MOPVA114 Materials Characterization for SRF Cavities: Gaining Insight Into Nb3Sn 1111
SUSPSIK102   use link to see paper's listing under its alternate paper code  
 
  • J. Tuggle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
  • G.V. Eremeev, A.D. Palczewski, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, U. Pudasaini
    The College of William and Mary, Williamsburg, Virginia, USA
 
  Funding: JLab work supported by U.S. DOE Contract No. DE-AC05-06OR23177. Work at William & Mary and Virginia Tech supported by the Office of High Energy Physics, U.S. Department of Energy grant DE-SC-0014475
Although SRF accelerators are an invaluable research tool they can be painfully expensive to construct and operate at the current level of SRF technology. This cost is significantly due to the necessity to operate at a temperature of only 2K. Considerable research is currently underway into next generation SRF cavity technologies such as Ndoping and Nb3Sn coating. Both of these technologies will lower the cryogenic load of accelerators, correspondingly lowering both construction and operating costs. However, current understanding of either technology is incomplete and in order to elucidate the underlying mechanisms there is a need to push current characterization methods forward. In this work, ion beam techniques (e.g. focused ion beam (FIB)), and electron backscatter diffraction (EBSD) were applied to help understand Nb3Sn coating mechanisms. This presentation will focus on characterization, providing examples of EBSD work, along with discussion of some of the issues encountered while trying to produce high quality EBSD data.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA114  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPVA144 Post-Processing of Nb3Sn Coated Nb 1190
SUSPSIK106   use link to see paper's listing under its alternate paper code  
 
  • U. Pudasaini, M.J. Kelley
    The College of William and Mary, Williamsburg, Virginia, USA
  • G.V. Eremeev, M.J. Kelley, C.E. Reece
    JLab, Newport News, Virginia, USA
  • M.J. Kelley, J. Tuggle
    Virginia Polytechnic Institute and State University, Blacksburg, USA
 
  Funding: Supported by the U.S. Department of Energy, Office of Science, Office of Nuclear Physics under contract DE­AC05­06OR23177 and Office of High Energy Physics under grant SC00144475.
Practical SRF cavities may be subjected to one or more processes after nominally complete preparation. Successful implementation of such processes in Nb3Sn coated cavities requires the understanding of material's response to these treatments. SRF-grade Nb samples, coated with Nb3Sn by the widely used tin vapor diffusion process were subjected to one or more of the following: hydrofluoric acid (HF) rinsing, oxypolishing, buffered chemical polishing (BCP) or electrochemical treatment. They were examined by materials characterization tech-niques including scanning electron microscopy (SEM) with energy dispersive X-ray spectroscopy (EDS), atomic force microscopy (AFM), and X-ray photoelectron spec-troscopy (XPS). The effects compared to niobium are different enough in most cases that further development is desirable to routinely obtain a favorable result.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA144  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)