Author: Enomoto, Y.
Paper Title Page
TUPAB004 Progress of 7-GeV SuperKEKB Injector Linac Upgrade and Commissioning 1300
 
  • K. Furukawa, M. Akemoto, D.A. Arakawa, Y. Arakida, H. Ego, A. Enomoto, Y. Enomoto, S. Fukuda, Y. Funahashi, T. Higo, H. Honma, N. Iida, M. Ikeda, H. Kaji, K. Kakihara, T. Kamitani, H. Katagiri, M. Kawamura, M. Kurashina, S. Matsumoto, T. Matsumoto, H. Matsushita, S. Michizono, K. Mikawa, T. Miura, F. Miyahara, H. Nakajima, K. Nakao, T. Natsui, M. Nishida, Y. Ogawa, Y. Ohnishi, S. Ohsawa, F. Qiu, I. Satake, D. Satoh, M. Satoh, Y. Seimiya, A. Shirakawa, H. Sugimoto, H. Sugimura, T. Suwada, T. Takatomi, T. Takenaka, M. Tanaka, N. Toge, Y. Yano, K. Yokoyama, M. Yoshida, R. Zhang, X. Zhou
    KEK, Ibaraki, Japan
 
  KEK injector linac has delivered electrons and positrons for particle physics and photon science experiments for more than 30 years. It is being upgraded for the SuperKEKB project, which aims at a 40-fold increase in luminosity over the previous project KEKB, in order to increase our understanding of new physics beyond the standard model of elementary particle physics. SuperKEKB asymmetric electron and positron collider with its extremely high luminosity requires a high current, low emittance and low energy spread injection beam from the injector. Electron beams will be generated by a new type of RF gun, that will provide a much higher beam current to correspond to a large stored beam current and a short lifetime in the ring. The positron source is another major challenge that enhances the positron bunch intensity from 1 to 4 nC by increasing the positron capture efficiency, and the positron beam emittance is reduced from 2000 micron to 20 micron in the vertical plane by introducing a damping ring, followed by the bunch compressor and energy compressor. The recent status of the upgrade and beam commissioning is reported.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK007 Optics Design and Observation for the Beam Abort System in SuperKEKB HER 2922
 
  • N. Iida, K. Egawa, Y. Enomoto, Y. Funakoshi, M. Kikuchi, T. Mimashi, Y. Ohnishi, K. Oide, Y. Suetsugu
    KEK, Ibaraki, Japan
 
  In the first commissioning of SuperKEKB, which is 'Phase 1', the new abort system is tested in the High Energy Ring (HER). There is a risk that aborted beams with low emittance and high current may destroy the window for extraction from beam pipe. In order to enlarge the aborted beam at the window, quadrupole field is applied only for the aborted beam. In the Low Energy Ring (LER), quadrupole pulsed magnets will be installed to enlarge the aborted beam, and in the HER, a pair of identical sextupole magnets is installed between the abort kickers and the extraction window. These sextrupole magnets are connected by I or 'I transformation to cancel the geometrical nonlinearity for the stored beam in the ring. This paper will report the optics design for the abort system of the HER as well as the observation of the aborted beam.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPIK012 Performance of SuperKEKB High Energy Ring Beam Abort System 2939
 
  • T. Mimashi, Y. Enomoto, N. Iida, M. Kikuchi, K. Kodama, T. Mori, Y. Suetsugu
    KEK, Ibaraki, Japan
  • K. Abe
    Hitachi Power Semiconductor Device, Ltd., Hitachishi, Ibaraki, Japan
  • K. Kise, A. Tokuchi
    Pulsed Power Japan Laboratory Ltd., Kusatsu-shi Shiga, Japan
 
  New Beam abort system was installed at the Super-KEKB High Energy Ring. It was designed to enlarge the horizontal beam size at the beam extraction window to protect the extraction window, and it also makes the beam abort gap shorter. It consists of four horizontal kicker magnets, one vertical kicker to sweep the beam position in vertical direction, sextupole magnet to enlarge the horizontal beam size, one lambertson magnet, Ti extraction window and beam dump. Four horizontal kicker magnets and one vertical kicker magnet connects to the one power supply. The ceramic chambers cooled by the water are inserted in each kicker coils. The Abort system had been used during SuperKEKB phase 1 operation. This paper describes the performance of the abort system.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPIK012  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)