Author: Du, B.
Paper Title Page
THPAB123 Low Level RF Control System Architecture OF IR-FEL 4014
 
  • B. Du, G. Huang, L. Lin, W. Liu, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Infrared free electron laser (IR-FEL) is one type of laser driven by accelerator and generated by undulator. It is built by National Synchrotron Radiation Laboratory (NSRL). Compared to synchrotron radiation light source, it have much higher demand of beam quality. Low level RF control system (LLRF) need to reach higher controlled accuracy corresponded to the demand. Accelerating structure which contains one pre-buncher, one buncher and two accelerating tube can accelerate beam to 60MeV. Frequency distribution system use direct digital synthesizer technology to generate 5 signal of different frequency. LLRF system detect 8 channels signal, one for control loop, and the others for monitor and interlock. The hardware contain MTCA.4 architecture which is advanced in global; RF board for downconverter and IQ modulation output; DSP board for sampling, controller and transmission.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB123  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB124 DSP Frame and Algorithm of LLRF of IR-FEL 4017
 
  • B. Du, G. Huang, L. Lin, W. Liu, Z.R. Zhou
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Infrared Free Electron Laser (IR-FEL) use linear accelerator to accelerate electron to relative speed and then generate simulated radiation of infrared wavelength by periodic magnetic field of undulator. The amplitude and phase of microwave field need to be controlled precisely by low level RF control system (LLRF) to meet the high quality demand of electron from undulator. This paper mainly introduce the digital signal processing frame and feedback algorithm. Four times frequency sampling can realize IQ demodulation precisely and reduce DC offset, amplitude sampling error is less than 0.075% and phase sampling error is less than 0.1°. Pipeline CORDIC can calculate amplitude and phase by parallel processing and shift operation. Phase calculating accuracy reach 0.0005° when iteration count is 18. FIR filter is used to improve frequency selected performance. Feedback loop use digital PI controller to adjust system output.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB124  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPAB127 Development of 1.3 GHz Cavity Combiner for 24 kW CW SSA 4020
SUSPSIK107   use link to see paper's listing under its alternate paper code  
 
  • W. Liu, B. Du, G. Huang, L. Lin, L. Shang, W.B. Song
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  The 24KW CW SSA (Solid-State Amplifier) is being developed to drive the 1.3GHz SC Linac used in a THz light source. The SSA adopts the compact all-in-one combining method ' cavity combiner, which is proposed and developed in recent years. This paper reports the R&D of the cavity combiner. The cavity combiner resonates in TM010 mode, coupling with 24 coaxial-connected 1kW amplifier modules. The cavity's electromagnetic characteristic is calculated by CST, and the mechanical structure including the input and output coupler has been designed.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPAB127  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK063 The RF System of Infrared Free Electron Laser Facility at NSRL 4239
 
  • L. Lin, B. Du, G. Huang, K. Jin, F.F. Wu
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Funding: The Natural Science Foundation of China
An infrared free electron laser light source (IRFEL) is being constructed at National Synchrotron Radiation Laboratory, which could be used in the study of far infrared detection, light dissociation and light excitation. The accelerator of IRFEL deliver a average current 300 A electron beam at 15~60 MeV, the energy spread is less than 240 keV, and the emittance is less than 30 mm*mrad. IRFEL is consisted of two optical resonator system, which could create 2.5~50 um, 40~200um infrared laser respectively. The design of IRFEL RF system is introduced, the recent progress of prebuncher, buncher, frequency distribution, accelerator and DLLRF system are also present in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK063  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)