Paper | Title | Page |
---|---|---|
WEYB1 | Towards a Fully Integrated Accelerator on a Chip: Dielectric Laser Acceleration (DLA) From the Source to Relativistic Electrons | 2520 |
|
||
Funding: This work was supported by the U.S. Department of Energy, Office of Science, under Contract no. DE-AC02-76SF00515, and by the Gordon and Betty Moore Foundation under grant GBMF4744 (Accelerator on a Chip). Dielectric laser acceleration of electrons has recently been demonstrated with significantly higher accelerating gradients than other structure-based linear accelerators. Towards the development of an integrated 1 MeV electron accelerator based on dielectric laser accelerator technologies, development in several relevant technologies is needed. In this work, recent developments on electron sources, bunching, accelerating, focussing, deflecting and laser coupling structures are reported. With an eye to the near future, components required for a 1 MeV kinetic energy tabletop accelerator producing sub-femtosecond electron bunches are outlined. |
||
![]() |
Slides WEYB1 [12.774 MB] | |
DOI • | reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEYB1 | |
Export • | reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml) | |