Author: De Man, S.
Paper Title Page
WEPVA103 Renovation of CERN Antiproton Production Target Area and Associated Design, Testing and R&D Activities 3506
 
  • C. Torregrosa, M.E.J. Butcher, M. Calviani, A. De Macedo, S. De Man, R. Ferriere, E. Grenier-Boley, B. Lefort, E. Lopez Sola, A. Perillo-Marcone, M.A. Timmins
    CERN, Geneva, Switzerland
 
  In the Antiproton Decelerator (AD) Target Area antiprotons are produced by the collisions of 26 GeV/c proton beam with a fixed target. They are then collected by a 400 kA pulsed magnetic horn, momentum selected and injected into the AD facility. The area has been in operation since the 80s, keeping most of the equipment dating back to this period. A major upgrade is foreseen during the CERN's Long Shutdown 2 to guarantee the next decades of antiproton physics. Among other R&D activities, three main systems are within the scope of this upgrade; (i) a new antiproton target design, pressurized-air-cooled and with a new core configuration based on the results from the HiRadMat27 experiment. (ii) Manufacturing of a set of new magnetic horns and testing them using a dedicated test bench replicating the real horn setup. (iii) Design of new target and horn's trolleys, which are responsible for their positioning as well as providing an efficient long term maintenance giving the high radioactivity of the area. This paper presents an overview of these and other critical activities associated to the renovation of the target area, including status and direction of the new proposed designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA110 Analysis and Operational Feedback on the New Design of the High Energy Beam Dump in the CERN SPS 3524
 
  • P. Rios Rodriguez, J.A. Briz Monago, M. Calviani, K. Cornelis, S. De Man, R. Esposito, S.S. Gilardoni, B. Goddard, J.L. Grenard, D. Grenier, M. Grieco, J. Humbert, V. Kain, F.M. Leaux, C. Pasquino, A. Perillo-Marcone, J.R.F. Poujol, S. Sgobba, D. Steyart, F.M. Velotti, V. Vlachoudis
    CERN, Geneva, Switzerland
 
  CERN's Super Proton Synchrotron (SPS) high-energy internal dump (Target Internal Dump Vertical Graphite, known as TIDVG) is required to intercept beams from 102 to 450 GeV. The equipment installed in 2014 (TIDVG#3) featured an absorbing core composed of different materials surrounded by a water-cooled copper jacket, which hold the UHV of the machine. An inspection of a previous equipment (TIDVG#2) in 2013 revealed significant beam induced damage to the aluminium section of the dump, which required imposing operational limitations to minimise the risk of reproducing this phenomenon. Additionally, in 2016 a vacuum leak was detected in the dump assembly, which imposed further limitations, i.e. a reduction of the beam intensity that could be dumped per SPS supercycle. This paper presents a new design (TIDVG#4), which focuses on improving the operational robustness of the device. Moreover, thanks to the added instrumentation, a careful analysis of its performance (both experimentally and during operation) will be possible. These studies will help validating technical solutions for the design of the future SPS dump to be installed during CERN's Long Shutdown 2 in 2020 (TIDVG#5).  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA110  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)