Author: Crittenden, J.A.
Paper Title Page
MOPIK122 The Beam Optics of the FFAG Cell of the CBETA ERL Accelerator 820
 
  • N. Tsoupas, J.S. Berg, S.J. Brooks, G.J. Mahler, F. Méot, V. Ptitsyn, D. Trbojevic
    BNL, Upton, Long Island, New York, USA
  • J.A. Crittenden
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • S.C. Tygier
    UMAN, Manchester, United Kingdom
 
  Funding: Work supported by Brookhaven Science Associates, LLC under Contract No. DE-AC02-98CH10886 with the U.S. Department of Energy.
The CBETA project[*] is a prototype electron accelerator for the proposed eRHIC project[**]. The electron accelerator is based on the Energy Recovery Linac (ERL) and the Fixed Field Alternating Gradient (FFAG) principles. The FFAG arcs and the straight section of the accelerator are comprised of one focusing and one defocusing quadrupoles which are designed as Halbach-type permanent dipole magnets with quadrupoles component[***]. We will present the beam optics of the FFAG cell which is based on 3D field maps derived with the use of the OPERA computer code[****]. We will also present the electromagnetic design of the corrector magnets of the cell.
* http://arxiv.org/abs/1504.00588
** http://arxiv.org/ftp/arxiv/papers/1409/1409.1633.pdf
*** K. Halbach, Nucl. Instrum. Meth. 169 (1980) pp. 1-10
**** http://www.scientificcomputing.com
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPIK122  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOCB3 CBETA - Cornell University Brookhaven National Laboratory Electron Energy Recovery Test Accelerator 1285
 
  • D. Trbojevic, S. Bellavia, J.S. Berg, M. Blaskiewicz, S.J. Brooks, K.A. Brown, W. Fischer, F.X. Karl, C. Liu, G.J. Mahler, F. Méot, R.J. Michnoff, M.G. Minty, S. Peggs, V. Ptitsyn, T. Roser, P. Thieberger, N. Tsoupas, J.E. Tuozzolo, F.J. Willeke, H. Witte
    BNL, Upton, Long Island, New York, USA
  • N. Banerjee, J. Barley, A.C. Bartnik, I.V. Bazarov, D.C. Burke, J.A. Crittenden, L. Cultrera, J. Dobbins, B.M. Dunham, R.G. Eichhorn, S.J. Full, F. Furuta, R.E. Gallagher, M. Ge, B.K. Heltsley, G.H. Hoffstaetter, R.P.K. Kaplan, V.O. Kostroun, Y. Li, M. Liepe, W. Lou, C.E. Mayes, J.R. Patterson, P. Quigley, D.M. Sabol, D. Sagan, J. Sears, C.H. Shore, E.N. Smith, K.W. Smolenski, V. Veshcherevich, D. Widger
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • D. Douglas
    JLab, Newport News, Virginia, USA
  • D. Jusic, J.R. Patterson
    Cornell University, Ithaca, New York, USA
 
  Funding: New York State Energy Research and Development Authority (NYSERDA)
Cornell's Lab of Accelerator-based Sciences and Education (CLASSE) and the Collider Accelerator Department (BNL-CAD) are developing the first SRF multi-turn energy recovery linac with Non-Scaling Fixed Field Alternating Gradient (NS-FFAG) racetrack. The existing injector and superconducting linac at Cornell University are installed together with a single NS-FFAG arcs and straight section at the opposite side of the the linac to form an Electron Energy Recovery (ERL) system. Electron beam from the 6 MeV injector is injected into the 36 MeV superconducting linac, and accelerated by four successive passes: from 42 MeV up to 150 MeV using the same NS-FFAG structure made of permanent magnets. After the maximum energy of 150 MeV is reached, the electron beam is brought back to the linac with opposite Radio Frequency (RF) phase. Energy is recovered and reduced to the initial value of 6 MeV with 4 additional passes. There are many novelties: a single NS-FFAG structure, made of permanent magnets, brings electrons with four different energies back to the linac. A new adiabatic NS-FFAG arc-to-straight section merges 4 separated orbits into a single orbit in the straight section.
 
slides icon Slides TUOCB3 [41.888 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOCB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB018 Initial Data From an Electron Cloud Detector in a Quadrupole Magnet at CesrTA 1352
 
  • J.P. Sikora, S.T. Barrett, M.G. Billing, J.A. Crittenden, K.A. Jones, Y. Li, T.I. O'Connell
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Funding: This work is supported by the US National Science Foundation PHY-0734867, PHY-1002467 and the US Department of Energy DE-FC02-08ER41538, DE-SC0006505
In September 2016, we installed a detector in a quadrupole magnet that measures the electron cloud density using two independent techniques. Stripline electrodes collect cloud electrons which pass through holes in the beam-pipe wall. The array of small holes shields the striplines from the beam-induced electromagnetic pulse. The beam-pipe chamber has also been designed so that microwave measurements of the electron cloud density can be performed. The resonant microwaves are confined to be within the 56 cm length of the quadrupole. The detector is placed in a newly installed quadrupole that is adjacent to an existing lattice quadrupole of the same polarity. Since they are powered independently, their relative strengths can be varied with stored beam – allowing electron cloud measurements to be made as a function of gradient. This paper presents the first data obtained with this detector with trains of positron bunches at 5.3 GeV. The detector is installed in the Cornell Electron Storage Ring and is part of the test accelerator program for the study of electron cloud build-up using electron and positron beams from 2 to 5 GeV.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB018  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA034 Comparison of the Coupling of Dipole Motion From Bunch to Bunch in an Electron Beam Caused by Electron Clouds at CesrTA Due to Variations in Bunch Length and Chromaticity 4509
 
  • M.G. Billing, L.Y. Bartnik, J.A. Crittenden, M.J. Forster, N.T. Rider, J.P. Shanks, M.B. Spiegel, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  • E.C. Runburg
    University of Notre Dame, Indiana, USA
 
  Earlier experiments at the Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) have probed the interaction of the electron cloud (EC) with a 2.1 GeV stored positron beam. Since a very low EC density is expected with the electron bunches, these results characterize the dependence of beam-vacuum chamber impedance interactions, which are common to both positron and electron beams. The experiments were performed on a 30-bunch electron train with a 14 ns spacing, at a fixed current of 0.75mA/bunch, at two different vertical chromaticity settings and for four different bunch lengths (or synchrotron tunes.) The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 20 turn-by-turn beam position monitors in CESR to measure the correlated bunch-by-bunch dipole motion and an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the analysis of the observations from these experiments and compare them with effects of the EC on the positron beam's dipole motion and coupling of the motion from each bunch to its succeeding bunches.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA034  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA035 Dependence of the Coupling of Dipole Motion From Bunch to Bunch Caused by Electron Clouds at CesrTA Due to Variations in Bunch Length and Chromaticity 4512
 
  • M.G. Billing, L.Y. Bartnik, J.A. Crittenden, M.J. Forster, N.T. Rider, J.P. Shanks, M.B. Spiegel, S. Wang
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
  • R. Holtzapple
    CalPoly, San Luis Obispo, California, USA
  • E.C. Runburg
    University of Notre Dame, Indiana, USA
 
  The Cornell Electron-Positron Storage Ring Test Accelerator (CesrTA) has conducted experiments to probe the interaction of the electron cloud (EC) with a 2.1 GeV stored positron beam. These experiments investigate the dependence of beam'electron cloud interactions vs. bunch length (or synchrotron tune) at two values of the vertical chromaticity. The experiments utilized a 30-bunch positron train with a 14 ns spacing, at a fixed current of 0.75mA/bunch. The beam dynamics of the stored beam, in the presence of the electron cloud, was quantified using: 20 turn-by-turn beam position monitors in CESR to measure the correlated bunch-by-bunch dipole motion and an x-ray beam size monitor to record the bunch-by-bunch, turn-by-turn vertical size of each bunch within the trains. In this paper we report on the observations from these experiments and a more detailed analysis for the coupling of dipole motion via the EC from each bunch to succeeding bunches in the train.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA035  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA143 Beam-Breakup Studies for the 4-Pass Cornell-Brookhaven Energy Recovery LINAC Test Accelerator 4801
 
  • W. Lou, J.A. Crittenden, G.H. Hoffstaetter
    Cornell University (CLASSE), Cornell Laboratory for Accelerator-Based Sciences and Education, Ithaca, New York, USA
 
  Cornell University and Brookhaven National Laboratory are currently designing the Cornell-BNL ERL Test Accelerator (CBETA). To be built at Cornell's Wilson Lab, CBETA utilizes the existing ERL injector and main linac cryomodule (MLC). As the electron bunches pass through the MLC cavities, higher order modes (HOMs) are excited. The recirculating bunches interact with the HOMs, which can give rise to beam-breakup instability (BBU). Here we present simulation results on how BBU limits the maximum achievable current, and potential ways to improve the threshold current.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA143  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)