Author: Couprie, M.-E.
Paper Title Page
MOPVA004 Operating Simultaneously Two In-Vacuum Canted Undulators in Synchrotron SOLEIL 851
 
  • L.S. Nadolski, Y.-M. Abiven, P. Brunelle, N. Béchu, M.-E. Couprie, F.J. Cullinan, X. Delétoille, M. El Ajjouri, C. Herbeaux, N. Hubert, N. Jobert, M. Labat, J.-F. Lamarre, A. Lestrade, A. Loulergue, O. Marcouillé, P. Monteiro, A. Nadji, R. Nagaoka, D. Pédeau, P. Rommeluère, K.T. Tavakoli, M. Valléau, J. Vétéran
    SOLEIL, Gif-sur-Yvette, France
  • C. Benabderrahmane
    ESRF, Grenoble, France
 
  Each long SOLEIL beamline, ANATOMIX and Nanoscopium, takes a photon beam from an in-vacuum undulator with a minimum gap of 5.5 mm. The canted radiation sources are installed in a long straight section of the storage ring. The first closure of both undulators led to the severe damage of the downstream undulator in 2011. The reason for this incident has been investigated and clearly identified. A long-term project has enabled us to find a technical solution for a simultaneous operation of both undulators. A special angle fast interlock was designed and a dedicated photon absorber has been introduced at the entrance of the second undulator while keeping the impact on the beam performance as low as possible. The main technical steps will be reported with an interim solution put in place in spring 2015 and a final solution deployed and validated in May 2016.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPVA004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOAA3 Progress of Pr2Fe14B Based Hybrid Cryogenic Undulators at SOLEIL 1213
SUSPSIK023   use link to see paper's listing under its alternate paper code  
 
  • A.M. Ghaith, P. Berteaud, F. Blache, F. Briquez, N. Béchu, M.-E. Couprie, J. Da Silva Castro, J.M. Dubuisson, C. Herbeaux, C.A. Kitegi, A. Lestrade, O. Marcouillé, F. Marteau, M. Sebdaoui, G. Sharma, A. Somogyi, K.T. Tavakoli, M. Tilmont, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
  • C. Benabderrahmane
    ESRF, Grenoble, France
 
  Cryogenic Permanent Magnet Undulators (CPMUs) take advantage of the enhanced field performance of permanent magnets when cooled down to low temperature, enabling shorter period with sufficient magnetic field to achieve high brightness radiation in the X-ray domain. Several CPMUs have been manufactured at SOLEIL. The first CPMU of period 18 mm (U18), optimized with a phase error of 3.2° at temperature of 77 K, has been installed and operated for the past 5 years at SOLEIL for the NANOSCOPIUM beamline. We report on photon beam based alignment enabling for a better adjustment of the vertical position offset of the undulator with a precision of 50 μm, and on the correction of the taper with a precision of 5 μrad to enhance the radiation flux. A second U18 cryo-ready undulator, with a new mechanical and magnetic sorting of module shimming, has attained a phase error of 2.3° at CT without any further adjustments after the assembly. Currently, two more CPMUs are being built; a 2 m long U18 for the SOLEIL ANATOMIX beamline, and a 3 m long U15 undulator reaching a magnetic gap of 3 mm. The new challenges encountered with magnetic measurements and mechanical designs for U15 are presented.  
slides icon Slides TUOAA3 [3.491 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOAA3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUOBB3 HORIZON 2020 EuPRAXIA Design Study 1265
 
  • P.A. Walker, R.W. Aßmann, J. Bödewadt, R. Brinkmann, J. Dale, U. Dorda, A. Ferran Pousa, A.F. Habib, T. Heinemann, O. S. Kononenko, C. Lechner, B. Marchetti, A. Martinez de la Ossa, T.J. Mehrling, P. Niknejadi, J. Osterhoff, K. Poder, E.N. Svystun, G.E. Tauscher, M.K. Weikum, J. Zhu
    DESY, Hamburg, Germany
  • D. Alesini, M.P. Anania, F.G. Bisesto, E. Chiadroni, M. Croia, M. Ferrario, F. Filippi, A. Gallo, A. Mostacci, R. Pompili, S. Romeo, J. Scifo, C. Vaccarezza, F. Villa
    INFN/LNF, Frascati (Roma), Italy
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    The University of Liverpool, Liverpool, United Kingdom
  • A.S. Alexandrova, R.B. Fiorito, C.P. Welsch, J. Wolfenden
    Cockcroft Institute, Warrington, Cheshire, United Kingdom
  • N.E. Andreev, D. Pugacheva
    JIHT RAS, Moscow, Russia
  • T. Audet, B. Cros, G. Maynard
    CNRS LPGP Univ Paris Sud, Orsay, France
  • A. Bacci, D. Giove, V. Petrillo, A.R. Rossi, L. Serafini
    Istituto Nazionale di Fisica Nucleare, Milano, Italy
  • I.F. Barna, M.A. Pocsai
    Wigner Research Centre for Physics, Institute for Particle and Nuclear Physics, Budapest, Hungary
  • A. Beaton, P. Delinikolas, B. Hidding, D.A. Jaroszynski, F.Y. Li, G.G. Manahan, P. Scherkl, Z.M. Sheng, M.K. Weikum
    USTRAT/SUPA, Glasgow, United Kingdom
  • A. Beck, A. Specka
    LLR, Palaiseau, France
  • A. Beluze, M. Mathieu, D.N. Papadopoulos
    LULI, Palaiseau, France
  • A. Bernhard, E. Bründermann, A.-S. Müller
    KIT, Karlsruhe, Germany
  • S. Bielawski
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • F. Brandi, G. Bussolino, L.A. Gizzi, P. Koester, B. Patrizi, G. Toci, M. Vannini
    INO-CNR, Pisa, Italy
  • O. Bringer, A. Chancé, O. Delferrière, J. Fils, D. Garzella, P. Gastinel, X. Li, A. Mosnier, P.A.P. Nghiem, J. Schwindling, C. Simon
    CEA/IRFU, Gif-sur-Yvette, France
  • M. Büscher, A. Lehrach
    FZJ, Jülich, Germany
  • M. Chen, L. Yu
    Shanghai Jiao Tong University, Shanghai, People's Republic of China
  • A. Cianchi
    Università di Roma II Tor Vergata, Roma, Italy
  • J.A. Clarke, N. Thompson
    STFC/DL/ASTeC, Daresbury, Warrington, Cheshire, United Kingdom
  • M.-E. Couprie
    SOLEIL, Gif-sur-Yvette, France
  • G. Dattoli, F. Nguyen
    ENEA C.R. Frascati, Frascati (Roma), Italy
  • N. Delerue
    LAL, Orsay, France
  • J.M. Dias, R.A. Fonseca, J.L. Martins, L.O. Silva, U. Sinha, J. Vieira
    IPFN, Lisbon, Portugal
  • K. Ertel, M. Galimberti, R. Pattathil, D. Symes
    STFC/RAL, Chilton, Didcot, Oxon, United Kingdom
  • J. Fils
    GSI, Darmstadt, Germany
  • A. Giribono
    INFN-Roma, Roma, Italy
  • L.A. Gizzi
    INFN-Pisa, Pisa, Italy
  • F.J. Grüner, A.R. Maier
    CFEL, Hamburg, Germany
  • F.J. Grüner, T. Heinemann, B. Hidding, O.S. Karger, A. Knetsch, A.R. Maier
    University of Hamburg, Institut für Experimentalphysik, Hamburg, Germany
  • C. Haefner
    LLNL, Livermore, California, USA
  • B.J. Holzer
    CERN, Geneva, Switzerland
  • S.M. Hooker
    University of Oxford, Clarendon Laboratory, Oxford, United Kingdom
  • S.M. Hooker, R. Walczak
    JAI, Oxford, United Kingdom
  • T. Hosokai
    Osaka University, Graduate School of Engineering, Osaka, Japan
  • C. Joshi
    UCLA, Los Angeles, California, USA
  • M. Kaluza
    HIJ, Jena, Germany
  • S. Karsch
    LMU, Garching, Germany
  • E. Khazanov, I. Kostyukov
    IAP/RAS, Nizhny Novgorod, Russia
  • D. Khikhlukha, D. Kocon, G. Korn, A.Y. Molodozhentsev, L. Pribyl
    ELI-BEAMS, Prague, Czech Republic
  • L. Labate, P. Tomassini
    CNR/IPP, Pisa, Italy
  • W. Leemans, C.B. Schroeder
    LBNL, Berkeley, California, USA
  • A. Lifschitz, V. Malka, F. Massimo
    LOA, Palaiseau, France
  • V. Litvinenko
    BNL, Upton, Long Island, New York, USA
  • V. Litvinenko
    Stony Brook University, Stony Brook, USA
  • W. Lu
    TUB, Beijing, People's Republic of China
  • V. Malka
    Ecole Polytechnique, Palaiseau, France
  • S. P. D. Mangles, Z. Najmudin, A. A. Sahai
    Imperial College of Science and Technology, Department of Physics, London, United Kingdom
  • A. Marocchino, A. Mostacci
    University of Rome La Sapienza, Rome, Italy
  • K. Masaki, Y. Sano
    JAEA/Kansai, Kyoto, Japan
  • U. Schramm
    HZDR, Dresden, Germany
  • M.J.V. Streeter, A.G.R. Thomas
    Cockcroft Institute, Lancaster University, Lancaster, United Kingdom
  • C. Szwaj
    PhLAM/CERCLA, Villeneuve d'Ascq Cedex, France
  • C.-G. Wahlstrom
    Lund Institute of Technology (LTH), Lund University, Lund, Sweden
  • R. Walczak
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
  • G.X. Xia
    UMAN, Manchester, United Kingdom
  • M. Yabashi
    JASRI/SPring-8, Hyogo, Japan
  • A. Zigler
    The Hebrew University of Jerusalem, The Racah Institute of Physics, Jerusalem, Israel
 
  The Horizon 2020 Project EuPRAXIA ('European Plasma Research Accelerator with eXcellence In Applications') aims at producing a design report of a highly compact and cost-effective European facility with multi-GeV electron beams using plasma as the acceleration medium. The accelerator facility will be based on a laser and/or a beam driven plasma acceleration approach and will be used for photon science, high-energy physics (HEP) detector tests, and other applications such as compact X-ray sources for medical imaging or material processing. EuPRAXIA started in November 2015 and will deliver the design report in October 2019. EuPRAXIA aims to be included on the ESFRI roadmap in 2020.  
slides icon Slides TUOBB3 [9.269 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUOBB3  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPIK003 Electron Transport on COXINEL Beam Line 1688
SUSPSIK034   use link to see paper's listing under its alternate paper code  
 
  • T. André, I.A. Andriyash, F. Blache, F. Bouvet, F. Briquez, M.-E. Couprie, Y. Dietrich, J.P. Duval, M. El Ajjouri, A.M. Ghaith, C. Herbeaux, N. Hubert, M. Khojoyan, M. Labat, N. Leclercq, A. Lestrade, A. Loulergue, O. Marcouillé, F. Marteau, P. N'gotta, P. Rommeluère, K.T. Tavakoli, M. Valléau
    SOLEIL, Gif-sur-Yvette, France
  • S. Bielawski, C. Evain, C. Szwaj
    PhLAM/CERLA, Villeneuve d'Ascq, France
  • S. Corde, J. Gautier, J.-P. Goddet, G. Lambert, B. Mahieu, V. Malka, S. Smartzev, C. Thaury
    LOA, Palaiseau, France
  • E. Roussel
    Elettra-Sincrotrone Trieste S.C.p.A., Basovizza, Italy
 
  COXINEL experiment aims at demonstrating free electron laser (FEL) amplification with a laser plasma accelerator (LPA). For COXINEL, a dedicated 8 m transport line has been designed and prepared at SOLEIL. We present here LPA beam transport results around 180 MeV through this line. Different electron beam optics were applied.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK003  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPAB004 Progress Status for the 10 Year Old SOLEIL Synchrotron Radiation Facility 2564
 
  • L.S. Nadolski, Y.-M. Abiven, P. Brunelle, A. Buteau, N. Béchu, M.-E. Couprie, X. Delétoille, J.M. Dubuisson, C. Herbeaux, N. Hubert, M. Labat, J.-F. Lamarre, P. Lebasque, A. Lestrade, A. Loulergue, M. Louvet, P. Marchand, O. Marcouillé, F. Marteau, A. Nadji, R. Nagaoka, F. Ribeiro, K.T. Tavakoli, M.-A. Tordeux
    SOLEIL, Gif-sur-Yvette, France
 
  Synchrotron SOLEIL has just turned 10 years since its commissioning. The 2.75 GeV facility is now delivering very stable photon beams to 29 beam lines. A total of 5 operation modes are available in top-up. Maintaining and updating the key performance metric remains a daily work facing both aging of components and tighter operation requirements. Low-alpha operation is attracting more beam lines leading us to an upgrade of the Booster (BOO) radiofrequency (RF) system in order to increase the injection efficiency into the storage ring (SR). The femtoslicing experiment is now in production for a hard X-ray beam line; a dedicated chicane has been installed for a second beam line in the soft X-ray regime. The two long canted beam lines can operate simultaneously at minimum gaps since May 2016 thanks to the introduction of a dedicated photon absorber and a fast angle interlock. R&D work in several areas will be reported. In parallel lattice design are in progress both for short term and long term evolution of the ring performance.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPAB004  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)