Author: Corsini, R.
Paper Title Page
MOPAB115 Transverse Beam Phase-Space Measurement Experience at CTF3 393
 
  • D. Gamba, B. Constance, R. Corsini, S. Döbert, L. Malina, T. Persson, J. Roberts, A.P. Rollings, P.K. Skowroński, F. Tecker
    CERN, Geneva, Switzerland
  • L. Martin
    JAI, Oxford, United Kingdom
  • A.L. Peirson Serratosa
    Oxford University, Physics Department, Oxford, Oxon, United Kingdom
 
  One of the objective of the CLIC Test Facility (CTF3) at CERN is to demonstrate the CLIC Drive Beam Recombination concept. An accurate control of the transverse beam parameters is necessary in order to succeed in preserving the beam quality after the recombination. During the activity of the facility we improved our tools and technique for characterising the transverse phase space of the beam before and after recombination. The common quadrupole scan technique was improved by performing constant-beam-size measurement and it was enriched by a tomographic reconstruction of the phase-space. Moreover studies have been performed in order to estimate and subtract the impact of dispersion on such a measurements. An overview of these techniques will be presented with actual measurements performed over the last year of operations of the facility.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB115  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUZB1 Final Results From the Clic Test Facility (CTF3) 1269
 
  • R. Corsini
    CERN, Geneva, Switzerland
 
  The unique CLIC TEST Facility (CTF3) has been built more than a decade ago to demonstrate the feasibility of the CLIC two beam acceleration scheme. The emphasis was one the high current drive beam generation using a fully loaded highly efficient linac and a complex combination scheme to increase beam current and bunch repetition frequency. This drive beam has been used for deceleration experiments and two beam acceleration. A wealth of relevant results for accelerator physics even beyond CLIC has been obtained and will be presented. The rf to beam efficiency of the linac exceeds 95%, after combination the 28 A drive beam with 12 GHz bunch repetition rate has been used to extract more than 50% of its energy producing 1.3 GW of 12 GHz power as well as performing two beam acceleration at 12 GHz with gradients up to 150 MV/m.  
slides icon Slides TUZB1 [23.702 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUZB1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB016 The CLIC Main Linac Module Updated Design 1345
 
  • C. Rossi, M. Aicheler, N. Catalán Lasheras, R. Corsini, S. Döbert, A. Grudiev, A. Latina, H. Mainaud Durand, M. Modena, H. Schmickler, D. Schulte, S. Stapnes, I. Syratchev, A.L. Vamvakas, W. Wuensch
    CERN, Geneva, Switzerland
  • M. Aicheler
    HIP, University of Helsinki, Finland
 
  In 2016, CLIC implementation working groups have started their reflection on how to finalize the CLIC design work in the different areas of the project, aiming for a technical design and an overall implementation plan for CLIC being available for the next European Strategy Update around 2019. One of the working groups has focused its attention on the Main Linac hardware, which has brought together the different competences of the study with the aim of producing an advanced set of specifications for the design, installation and operation of the CLIC module. As the fundamental unit for the construction of the Main Beam linac, the CLIC module needs to move from the existing prototypes exploring its performance into an advanced and functional unit where the full life cycle of the module is considered. The progress of the working group activity is summarized in this paper, with considerations on the requirements for the design of the next-phase CLIC module.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB016  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB017 Results of the Beam-Loading Breakdown Rate Experiment at the CLIC Test Facility CTF3 1348
 
  • E. Senes, T. Argyropoulos, N. Catalán Lasheras, R. Corsini, D. Gamba, J. Giner Navarro, A. Grudiev, G. McMonagle, R. Rajamaki, X.F.D. Stragier, I. Syratchev, F. Tecker, W. Wuensch
    CERN, Geneva, Switzerland
  • J. Giner Navarro
    IFIC, Valencia, Spain
  • R. Rajamaki
    Aalto University, School of Science and Technology, Aalto, Finland
  • E. Senes
    Torino University, Torino, Italy
 
  The RF breakdown rate is crucial for the luminosity performance of the CLIC linear collider. The required breakdown rate at the design gradient of 100 MV/m has been demonstrated, without beam presence, in a number of 12 GHz CLIC prototype structures. Nevertheless, the beam-loading at CLIC significantly changes the field profile inside the structures, and the behaviour with beam needs to be understood. A dedicated experiment in the CLIC Test Facility CTF3 to determine the effect of beam on the breakdown rate has been collecting breakdown data throughout the year 2016. The complete results of the experiment and the effect of the beam-loading on the breakdown rate are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB017  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)