Author: Chen, Q.S.
Paper Title Page
TUPIK070 Main Control System of the Linear Accelerator for the HUST THz-FEL 1858
 
  • B. Tang, Q.S. Chen, T. Hu, J. Jiang, Y.Q. Xiong
    HUST, Wuhan, People's Republic of China
 
  A free-electron laser terahertz radiation source(THz-FEL) with a table-top scale is constructed in Huazhong University of Science & Technology. The whole facility is under joint-debugging currently, and main measured parameters have already matched with design targets. This paper describes the main control system of the Linac-based injector, especially auto-matching and auto-commissioning modules. The former occurs at the begin of daily operation, which contains one key pre-heating and searching the best electric parameters and RF parameters automatically based on last operation status. The later applies in beam commissioning for both Linac and transport line combining with beam diagnostic system, which could save operation time and improve commissioning efficiency. Moreover, real-time monitoring and controlling for water-cooling and vacuum states are inserted in the main control system to protect the accelerator.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPIK070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPIK070 Localization of RF Breakdown Point in a Coaxially Loaded LINAC Cavity 4254
 
  • Q.S. Chen, T. Hu, B. Qin
    HUST, Wuhan, People's Republic of China
  • Y.J. Pei
    USTC/NSRL, Hefei, Anhui, People's Republic of China
 
  Here we report how the RF breakdown point (RFBP) can be localized in a coaxially loaded linac cavity with just the forward and the reflected power signal. The cavity uses 4 load cells instead of output coupler to absorb remanent power, so no transmitted power signal could be recorded. We propose two methods to analyze the measured signals and localize the RFBP. One method focuses on the time delay of the two signals while the other one focuses on the amplitude. Quantitative analysis showed the two methods were well consistent with each other and indicated the RFBP located at the end of the linac cavity.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPIK070  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THPVA112 Progress of the Beamline and Energy Selection System for HUST Proton Therapy Facility 4719
 
  • B. Qin, Q.S. Chen, K. Fan, M. Fan, X.Y. Fang, D. Li, Z.K. Liang, K.F. Liu, X. Liu, P. Tan, J. Yang
    HUST, Wuhan, People's Republic of China
  • W. Chen
    Huazhong University of Science and Technology, State Key Laboratory of Advanced Electromagnetic Engineering and Technology,, Hubei, People's Republic of China
 
  Funding: Work supported by The National Key Research and Development Program of China, with grant No. 2016YFC0105305
HUST proton therapy facility is a 5 years National Key Research and Development Program of China. This facil-ity is based on an isochronous superconducting cyclotron with two gantry treatment-rooms and one fixed beamline treatment station. The status for physical and technical design of the beamline and Energy Selection System (ESS) will be introduced in this paper.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THPVA112  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)