Author: Chang, C.H.
Paper Title Page
TUPAB105 Field Measurement System for a Cryogenic Permanent Magnet Undulator in TPS 1559
 
  • C.K. Yang, C.H. Chang, T.Y. Chung, W.H. Hsieh, J.C. Huang, C.-S. Hwang
    NSRRC, Hsinchu, Taiwan
 
  Short period in-vacuum, permanent magnet undulators operating at cryogenic temperatures are being developed worldwide to serve as brilliant and coherent light sources for medium energy storage rings. A hybrid cryogenic permanent magnet undulator (CU) with PrFeB magnets has now been designed and constructed at NSRRC [1]. To characterize the performance and to determine magnetic field errors after cool down poses some technical chal-lenges compared to room temperature undulators. A new system combining a Hall probe and a stretched wire has been designed to measure the field integrals, trajectory, phase errors, and K value under low temperature and vacuum conditions. Field measurements in this cryogenic undulator will be performed around 77 K as well as at room temperature, making temperature dependent calibra-tion of the Hall probes necessary. The main features and improvement of the measurement and calibration system are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB105  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
TUPAB106 Development of a Cryogenic Permanent Magnet Undulator for the TPS 1562
 
  • J.C. Huang, C.H. Chang, T.Y. Chung, C.-S. Hwang, J.C. Jan, C.S. Yang, C.K. Yang
    NSRRC, Hsinchu, Taiwan
  • H. Kitamura
    RIKEN SPring-8 Center, Sayo-cho, Sayo-gun, Hyogo, Japan
 
  Development of a cryogenic permanent magnet undu-lator (CPMU) at the Taiwan Photon Source (TPS) is the most recent activity toward a new light source for the Phase-II beamlines. A hybrid-type CPMU with a period length of 15 mm is under construction with PrFeB permanent-magnet materials. A maximum effective magnetic field of 1.77 T at a gap of 3 mm is expected when the magnets (PMs) are cooled down around 77 K. The features desired for the TPS CPMU are low-intrinsic-phase-error characteristics and high thermal budget for various kinds of heat loads. The design of the TPS CPMU is discussed in this paper.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-TUPAB106  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)