Author: Cesar, D.B.
Paper Title Page
MOPAB150 Imaging the Spatial Modulation of a Relativistic Electron Beam 480
 
  • C. Zhang, W.S. Graves, L.E. Malin, J. Spence
    Arizona State University, Tempe, USA
  • D.B. Cesar, J.M. Maxson, P. Musumeci, A. Urbanowicz
    UCLA, Los Angeles, USA
  • C. Limborg, E.A. Nanni
    SLAC, Menlo Park, California, USA
 
  Funding: Work supported by NSF awards 1632780, 1415583, 1231306 and DOE award de-sc0009914
We describe Bragg diffraction of relativistic electron beams through a patterned Si crystal consisting of alternating thick and thin strips to produce nanometer scale electron density modulations. Multi-slice simulations show that a two-beam situation can be set up where, for a particular thickness of Si, nearly 100% of the electron beam is diffracted. Plans are underway to carry out experiments showing this effect in UCLA's ultrafast electron microscopy lab with 3.5 MeV electrons. We will select either the diffracted beam or the primary beam with a small aperture in the diffraction plane of a magnetic lens, and so record either the dark or bright field magnified image of the strips. Our first goal is to observe the nanopatterned beam at the image plane. We will then investigate various crystal thickness and sample orientations to maximize the contrast in the pattern and explore tuning the period of the modulation through varying magnification.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB150  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)