Author: Caselle, M.
Paper Title Page
MOPAB055 Towards Near-Field Electro-Optical Bunch Profile Monitoring in a Multi-Bunch Environment 227
 
  • P. Schönfeldt, E. Blomley, E. Bründermann, M. Caselle, S. Funkner, N. Hiller, B. Kehrer, A.-S. Müller, M.J. Nasse, G. Niehues, L. Rota, M. Schedler, M. Schuh, M. Weber
    KIT, Karlsruhe, Germany
 
  Funding: This work is funded by the BMBF contract numbers: 05K13VKA and 05K16VKA.
For electron accelerators, electro-optical methods in the near-field have been shown to be a powerful tool to detect longitudinal bunch profiles. In 2013, we demonstrated for the first time, electro-optical bunch profile measurements in a storage ring at the accelerator test facility and synchrotron light source ANKA at the Karlsruhe Institute of Technology (KIT). To study possible bunch-bunch interactions and its effects on the longitudinal dynamics, these measurements need to be performed in a multi-bunch environment. Up to now, due to long-ranging wake-fields the electro-optical monitoring was limited to single-bunch operation. Here, we present our new in-vacuum setup to overcome this limitation. First measurements show reduced wake-fields in particular around 2 ns, where the subsequent bunch can occur in a multi-bunch environment at ANKA.
 
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB055  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
MOPAB056 4-Channel Single Shot and Turn-by-Turn Spectral Measurements of Bursting CSR 231
 
  • J.L. Steinmann, E. Blomley, M. Brosi, E. Bründermann, M. Caselle, B. Kehrer, A.-S. Müller, L. Rota, M. Schuh, P. Schönfeldt, M. Siegel, M. Weber
    KIT, Karlsruhe, Germany
 
  The test facility and synchrotron radiation source ANKA at the Karlsruhe Institute of Technology (KIT) in Karlsruhe, Germany, can be operated in a short-bunch mode. Above a threshold current, the high charge density leads to microwave instabilities and the formation of sub-structures. These time-varying sub-structures on bunches of picosecond duration lead to the observation of bursting coherent synchrotron radiation (CSR) in the terahertz (THz) frequency range. The spectral information in this range contains valuable information about the bunch length, shape and sub-structures. We present recent measurements of a spectrometer setup that consists of 4 ultra-fast THz detectors, sensitive in different frequency bands, combined with the KAPTURE readout system developed at KIT for studies requiring high data throughput. This setup allows to record continuously the spectral information on a bunch-by-bunch and turn-by-turn basis. This contribution describes the potential of time-resolved spectral measurements of the short-bunch beam dynamics.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB056  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
THOBA1 Studies of the Micro-Bunching Instability in Multi-Bunch Operation at the ANKA Storage Ring 3645
SUSPSIK058   use link to see paper's listing under its alternate paper code  
 
  • M. Brosi, E. Blomley, E. Bründermann, M. Caselle, B. Kehrer, A. Kopmann, A.-S. Müller, L. Rota, M. Schedler, M. Schuh, M. Schwarz, P. Schönfeldt, J.L. Steinmann, M. Weber
    KIT, Karlsruhe, Germany
 
  Funding: Supported by the German Federal Ministry of Education and Research (05K13VKA & 05K16VKA), the Helmholtz Association (VH-NG-320) and the Helmholtz International Research School for Teratronics (HIRST)
The test facility and synchrotron light source ANKA at the Karlsruhe Institute of Technology (KIT) operates in the energy range from 0.5 to 2.5 GeV and can generate brilliant coherent synchrotron radiation (CSR) in the THz range employing a dedicated bunch length-reducing optic at 1.3 GeV beam energy. The high degree of spatial compression leads to complex longitudinal dynamics and to time evolving sub-structures in the longitudinal phase space of the electron bunches. The results of the micro-bunching instability are time-dependent fluctuations and strong bursts in the radiated THz power. To study these fluctuations in the emitted THz radiation simultaneously for each individual bunch in a multi-bunch environment, fast THz detectors are combined with KAPTURE, the dedicated KArlsruhe Pulse Taking and Ultrafast Readout Electronics system, developed at KIT. In this contribution we present measurements conducted to study possible multi-bunch effects on the characteristic bursting behavior of the micro-bunch instability.
 
slides icon Slides THOBA1 [12.910 MB]  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-THOBA1  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)