Author: Butcher, M.E.J.
Paper Title Page
MOPAB007 Status of Crystal Collimation Studies at the LHC 84
SUSPSIK008   use link to see paper's listing under its alternate paper code  
 
  • R. Rossi, O. Aberle, O.Ø. Andreassen, M.E.J. Butcher, C.A. Dionisio Barreto, I. Lamas Garcia, A. Masi, D. Mirarchi, S. Montesano, S. Redaelli, A. Rijllart, W. Scandale, P. Serrano Galvez, G. Valentino
    CERN, Geneva, Switzerland
  • F. Galluccio
    INFN-Napoli, Napoli, Italy
 
  Crystal collimation is a technique that relies on highly pure bent crystals to coherently deflect beam particles - through the channeling mechanisms - onto dedicated absorbers. Standard multi-stage collimation systems for hadron beams use amorphous materials as primary collimators and might be limited by nuclear interactions and ion fragmentation that are strongly suppressed in crystals. A crystal collimation setup was installed in the betatron cleaning insertion of the Large Hadron Collider (LHC) to demonstrate with LHC beams the feasibility of this concept and to compare its performance with that of the present system. Channeling was observed for the first time with 6.5 TeV beam and and plans for further crystal collimation beam tests at the LHC are discussed. Results of these first beam tests are presented.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-MOPAB007  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)  
 
WEPVA103 Renovation of CERN Antiproton Production Target Area and Associated Design, Testing and R&D Activities 3506
 
  • C. Torregrosa, M.E.J. Butcher, M. Calviani, A. De Macedo, S. De Man, R. Ferriere, E. Grenier-Boley, B. Lefort, E. Lopez Sola, A. Perillo-Marcone, M.A. Timmins
    CERN, Geneva, Switzerland
 
  In the Antiproton Decelerator (AD) Target Area antiprotons are produced by the collisions of 26 GeV/c proton beam with a fixed target. They are then collected by a 400 kA pulsed magnetic horn, momentum selected and injected into the AD facility. The area has been in operation since the 80s, keeping most of the equipment dating back to this period. A major upgrade is foreseen during the CERN's Long Shutdown 2 to guarantee the next decades of antiproton physics. Among other R&D activities, three main systems are within the scope of this upgrade; (i) a new antiproton target design, pressurized-air-cooled and with a new core configuration based on the results from the HiRadMat27 experiment. (ii) Manufacturing of a set of new magnetic horns and testing them using a dedicated test bench replicating the real horn setup. (iii) Design of new target and horn's trolleys, which are responsible for their positioning as well as providing an efficient long term maintenance giving the high radioactivity of the area. This paper presents an overview of these and other critical activities associated to the renovation of the target area, including status and direction of the new proposed designs.  
DOI • reference for this paper ※ https://doi.org/10.18429/JACoW-IPAC2017-WEPVA103  
Export • reference for this paper using ※ BibTeX, ※ LaTeX, ※ Text/Word, ※ RIS, ※ EndNote (xml)